Return to search

Cytochrome c oxidase subunit Vb interacts with human androgen receptor : a potential mechanism for neuronotoxicity in spinobulbar muscular atrophy

Spinobulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyGln) tract in the human androgen receptor (hAR). One mechanism by which polyGln-expanded proteins are believed to cause neuronotoxicity is through aberrant interaction(s) with, and possible sequestration of, critical cellular protein(s). / Our goal was to confirm and further characterize the interaction between hAR and cytochrome c oxidase subunit Vb (COXVb), a nuclear-encoded mitochondrial protein. We had previously isolated COXVb as an AR-interacting protein in a yeast two-hybrid search to identify candidates that interact with normal and polyGln-expanded AR. Using the mammalian two-hybrid system, we confirm that COXVb interacts with normal and mutant AR and demonstrate that the COXVb-normal AR interaction is stimulated by heat shock protein 70 (Hsp70). Also, BFP-tagged AR specifically co-localizes with cytoplasmic aggregates formed by GFP-labelled polyGln-expanded AR in androgen-treated cells. / Mitochondrial dysfunction may precede neuropathological findings in polyGln-expanded disorders and may thus represent an early event in neuronotoxicity. Interaction of COXVb and hAR, with subsequent sequestration of COXVb, may provide a mechanism for putative mitochondrial dysfunction in SBMA.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.33377
Date January 2000
CreatorsBeauchemin, Annie.
ContributorsPinsky, Leonard (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001783003, proquestno: MQ70686, Theses scanned by UMI/ProQuest.

Page generated in 0.0011 seconds