The role of the hypothalamic paraventricular nucleus (PVN) in cardiovascular and neuroendocrine regulation has been well documented. Much remains unknown however about the integration of synaptic signals within this nucleus and the neuronal subtypes and chemical messengers governing these processes. Angiotensin II (ANG) has been demonstrated to act as a neurotransmitter in PVN where it exerts considerable influence on neuronal excitability. The studies within this thesis were undertaken to delineate the actions of ANG on the membrane properties of PVN neurons and its effect on synaptic transmission within this nucleus.
We report that ANG activates a nitric oxide mediated negative feedback loop in the PVN. The magnitude of the depolarizing response to ANG appears to be dependant on this GABAergic inhibitory input demonstrating there exists within PVN an intrinsic negative feedback loop which modulates neuronal excitability in response to peptidergic excitation. We also demonstrate that the depolarizing response to ANG in magnocellular neurons is in part dependent upon increases in glutamatergic excitatory synaptic input. These data in combination highlight the multiple levels of synaptic integration controlling the output of magnocellular neurons in PVN.
PVN also contains significant populations of neurosecretory parvocellular neurons which exercise considerable influence over the adenohypophysis and therefore neuroendocrine regulation. ANG caused an AT1 receptor mediated depolarization of these neurosecretory neurons. Voltage-clamp analysis revealed that ANG activated a non-selective cationic current and reduced a sustained potassium current characteristic of IK. These studies identify multiple post-synaptic modulatory sites through which ANG can influence the excitability of neurosecretory parvocellular PVN neurons.
The findings in this thesis provide the framework for a cellular model of action of ANG within PVN to regulate the activity of this nucleus not only through direct cellular mediated ion channel interactions but also through modulation of synaptic input within the magnocellular system of PVN. / Thesis (Ph.D, Physiology) -- Queen's University, 2008-01-18 14:10:22.319
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/995 |
Date | 18 January 2008 |
Creators | Latchford, Kevin Jason |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 3190203 bytes, application/pdf |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.002 seconds