Return to search

Electronic structure of clean and adsorbate-covered InAs surfaces

This thesis is the result of investigations regarding the processes in InAs III-V semiconductor surfaces induced by additional charge incorporated by adsorbates. The aim of the project is to study the development of the accumulation layer on the metal/InAs(111)A/B surfaces and its electronic structure. InAs(111)A is indium-terminated and InAs(111)B is arsenic-terminated. In addition, InAs(100) is also studied. These three substrates are different; InAs(111)A has a (2x2)-termination, explained by an indium vacancy model, and the clean surface exhibits a two-dimensional electron gas (2DEG). InAs(111)B(1x1) is bulk-truncated and unreconstructed and does not host a 2DEG. InAs(100)(4x2)/c(8x2) exhibits a more covalent character of the surface bonds compared to InAs(111)A/B, and the surface is terminated by a complex reconstruction. Photoelectron spectroscopy and LEED (low energy electron diffraction) have been used as the main tools to study surfaces with sub-monolayer to monolayer amounts of adsorbates. A photoemission peak related to a two-dimensional electron gas appears close to the Fermi level. This 2DEG has in most cases InAs bulk properties, since it is located in the InAs conduction band. A systematic study of core levels and valence bands reveals that the appearance of the 2DEGs is a complex process connected to the surface order. Adsorption of lead, tin or bismuth on InAs(111)B(1x1) induces emission from a 2DEG, but only at monolayer coverage and when the surface is ordered. Cobalt reacts strongly with InAs forming InCo islands and no accumulation is observed. Examination of Cs/InAs(111)B does not reveal any 2DEG and the surface reaction is strongly related to the clean surface stabilization process. Examination of the In-terminated InAs(111)A(2x2) surface shows that In reacts strongly with cobalt and tin adatoms and with oxygen in cases of large exposure, which decreases the 2DEG intensity, while adatoms of cesium and small doses of oxygen enhance the emission from the 2DEG. InAs(100) is terminated with one kind of atom - the InAs(100)(4x2)/c(8x2) is indium terminated. Bismuth creates dimers on the surface and a 2DEG is observed. More generally, this thesis describes some of the general physical background applied to surface science and 2DEG. The first part is a general overview of the processes on the surface. The second part concentrates on the methods related to preparation of samples, and the third part on the measurement methods. The photoelectron spectroscopy part concerns the theory used in mapping electronic structure. The inserted figures are taken from different experiments, including results for InAs(111)A not previously published. / QC 20100910

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-24423
Date January 2010
CreatorsSzamota-Leandersson, Karolina
PublisherKTH, Materialfysik, MF, Stockholm, Sweden : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-ICT/MAP AVH, 1653-7610 ; 2010:01

Page generated in 0.0021 seconds