Geosynchronous Equatorial Orbit (GEO) is critical to Earth communications, weather monitoring, and national defense. Orbit estimation of GEO objects is difficult due to physical constraints placed on ground-based tracking devices such as weather, object range, and tracking frequency restrictions. These constraints are commonly mitigated through the use of two-way signaling devices for cooperative GEO satellites. However, determining the position and velocity of uncooperative GEO satellites and/or objects is more challenging. The objective of this dissertation is to quantify the increased orbital accuracy of objects in the GEO catalog when the Air Force Space Command Space Surveillance Network (AFSPC SSN) is augmented with space-based angles-only measurements from a sensor in a unique near-GEO orbit. Linear covariance theory and analysis provides an efficient method to determine the covariance of the position and velocity of an uncooperative GEO object, while incorporating uncertainties in the dynamics and sensor errors. Once this covariance is determined, an error budget analysis is performed to determine the major sources of uncertainty contributing to position errors of objects in the GEO catalog. As a result, it is shown through linear covariance analysis that incorporating measurements from a space-based sensor in a near-GEO orbit increases the orbital accuracy of GEO objects when compared to the orbital accuracy achieved with AFSPC SSN measurements alone.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7767 |
Date | 01 August 2017 |
Creators | Andrews, Blythe A. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0018 seconds