Return to search

Morphological, biochemical and molecular characterization of desiccation-tolerance in cyanobacterium Nostoc commune var. Vauch

Filaments of the desiccation-tolerant cyanobacterium Nostoc commune are embedded within, and distributed throughout, a dense glycan sheath. Analysis of the glycan of field materials and of pure cultures of N. commune DRH1 through light and electron microscopy, immunogold-labelling and staining with dyes, revealed changes in the pattern of differentiation in glycan micro-structure, as well as localized shifts in pH, upon rehydration of desiccated field material. A Ca/Si rich external (pellicular) layer of the glycan acts as a physical barrier on the surface of N. commune colonies. A purified fraction (> 12 kDa) of an aqueous extract of the glycan from desiccated field material contained glucose, N -acetylglucosamine, glucosamine, mannose and galactosamine with ratios of 3.1 : 1.4 : 1 : 0.1 : 0.06, respectively. Ethanol extracts of N. commune contained trehalose and sucrose and the levels of both became undetectable following cell rehydration. Elemental analysis of glycan extracts showed a flux in the concentrations of salts in the glycan matrix following rehydration of desiccated colonies. Intracellular cyanobacterial trehalase was identified using immunoblotting and its synthesis was detected upon rehydration of desiccated field cultures. Water-stress proteins (Wsp; molecular masses of 33, 37, and 39 kDa are the most abundant proteins in glycan), a water soluble UV-AlB-absorbing pigment, the lipid-soluble UV-protective pigment scytonernim, as well as two unidentified cyanobacterial glycoproteins (75 kDa and 110 kDa), were found within the glycan matrix. No evidence was found for either glycosylation, phosphorylation or acylation of Wsp polypeptides. NH2-terminal sequence analysis of the three proteins of Wsp were identical: Ala-Leu-Tyr-Gly-Tyr-Thr-Ile-Gly-Glu-Gln-X-Ile-Gln- Asn-Pro-Ser-Asn-Pro-Ser-Asn-Gly-Lys-Gln. An unidentified 68-kDa protein, the second most abundant protein in aqueous extracts of the glycan, was isolated and its N-terminal sequenced was determined: Ala-Phe-lle-Phe-Gly-Thr-Ile-Ser-Pro-Asn-Asn-Leu-Ser-Gly- Thr-Ser-Gly-Asn-Ser-Gly-Ile-Val-Gly-Ser-Ala. Gene bank searches with these sequences, and an internal sequence ofWsp (Glu-Ala-Arg-Val-Thr-Gly-Pro-Thr-Thr-Pro-Ile-Asp), identified homologies with various carbohydrate-modifying enzymes. Purified Wsp polypeptides associate with 1,4-β-D-xylanxylanohydrolase activity that was inhibited specifically by Wsp antiserum. In the absence of salt, Wsp polypeptides, and the water-soluble UV -A/B-absorbing pigments, form multimeric complexes through strong ionic interactions. The role of the glycan, and the protein and pigments that reside within it, in the desiccation tolerance of N. commune is discussed with respect to structure/function relationships. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/40154
Date24 October 2005
CreatorsHill, Donna René
ContributorsBiochemistry and Anaerobic Microbiology, Potts, Malcolm, Keenan, Thomas W., Hess, John L., Dean, Dennis R., Bevan, David R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatxiv, 160 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 30907343, LD5655.V856_1994.H555.pdf

Page generated in 0.0025 seconds