Return to search

Obstrucción cohomológica para extensión de deformaciones de algebras asociativas

En el estudio de la teoría de deformaciones se observa que hay por lo menos tres tipos distintos,
estos tipos aparecen en análisis, algebra y geometría algebraica. La teoría de deformaciones es
una idea que proviene desde Riemann con el estudio de las deformaciones de estructuras complejas de variedades Riemannianas. Por otro lado, las deformaciones en el área de la geometría
algebraica datan casi desde la aparición de esta área, ya que los objetos algebro-geométricos
pueden ser “deformados” con una variación de los coeficientes de sus ecuaciones de definición.
En el estudio de la teoría de deformaciones formales de algebras aparecen algunas preguntas
que aún se encuentran abiertas. Es en el caso particular de algebras asociativas donde aparece
un problema, no resuelto en general. Para explicar de que trata este problema debemos partir de
la definición de deformación de un álgebra asociativa. Es a partir de la condición de asociatividad, donde se observa que el “infinitesimal” de una deformación es un cociclo de Hochschild.
Se plantea entonces la pregunta “¿Dado un cociclo de Hochschild, resulta ser este cociclo el
“infinitesimal” de una deformación?”.
Desglosaremos el problema en una construcción recursiva de deformaciones truncadas. La
obstrucción a extender una deformación truncada de grado n a una de grado n+1 es un cociclo
de Hochschild. Este resultado que es uno de los resultados principales en la teoría de deformaciones, se probara en la Proposición 10. 2. Para ello empleamos la teoría de algebras graduadas
y conceptos como anillos de Lie y pre-Lie graduados así como sistemas pre-Lie. En el desarrollo de este trabajo se mostrará, además del resultado, la manera de trabajar con distintos
conceptos y como trabajar con operadores que aparecerán a lo largo del desarrollo. / In the study of the theory of deformations it is observed that there are at least three different
types, these types appear in analysis, algebra and algebraic geometry. The theory of deformations is an idea that comes from Riemann with the study of deformations of complex structures
of Riemannian varieties. On the other hand, deformations in the area of algebraic geometry date
almost from the appearance of this area since algebro-geometric objects can be "deformed" with
a variation of the coefficients of their defining equations.
In the study of the theory of formal deformations of algebras, some questions remain open.
In the particular case of associative algebras a problem appears that is not solved in general.
To explain what this problem is about, we must start from the definition of deformation of an
associative algebra. Considering the condition of associativity, where it is observed that the "infinitesimal" of a deformation is a Hochschild cocycle, the question arises "Given a Hochschild
cocycle, does this cocycle happens to be the "infinitesimal" of a deformation?".
One can decompose the problem into a recursive construction of truncated deformations.
The obstruction to extending a truncated deformation of degree n to a truncated deformation
of degree n+1, is a Hochschild cocyle. This result, wich is one of the most important results
in deformation theory, is proven in Prop.10.2. For this purpose, the theory of graded algebras
and concepts such as graded Lie and pre-Lie rings, pre-Lie systems will be used used. In the
development of this work we will also show, the ways of working with these different concepts
and how to work with operators that will appear throughout the development.

Identiferoai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/28284
Date16 July 2024
CreatorsMuñoz Ugarte, Bernardo Luis
ContributorsValqui Haase, Christian Holger
PublisherPontificia Universidad Católica del Perú, PE
Source SetsPontificia Universidad Católica del Perú
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by/2.5/pe/

Page generated in 0.0022 seconds