Return to search

Differential secretion from prestored heterogeneous protein sources is the basis of regulated nonparallel digestive enzyme secretion by the exocrine pancreas

For two decades, multiple observations of nonparallel pancreatic secretion, wherein digestive enzyme proportions change rapidly following various digestive stimuli, have conflicted with the concept of exocrine pancreatic homogeneity and the exocytosis model of parallel synthesis, transport and secretion of proteins. Evidence of pancreatic heterogeneity is presented, potentially resolving this longstanding controversy. Correlation and regression analysis simultaneously demonstrated exocytosis and nonparallel secretion, suggesting the existence of multiple heterogeneous exocytotic pathways. Next, heterogeneous prestored pancreatic protein sources were directly demonstrated using double isotopic labelling; temporal and secretagogue-specific regulation of the heterogeneous secretory sources was uncovered. Finally, specific enzyme proportions were linked to the heterogeneous sources by densitometric measurements of electrophoretic gels of secreted proteins. Thus, it appears that differential secretion from heterogeneous sources of prestored secretory proteins containing unique proportions of digestive enzymes is the basis of regulated nonparallel secretion in the exocrine pancreas.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.74316
Date January 1989
CreatorsMiller, Paul E.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Physiology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001233165, proquestno: AAINN63602, Theses scanned by UMI/ProQuest.

Page generated in 0.0017 seconds