Return to search

Real-Time Probabilistic Locomotion Synthesis for Uneven Terrain / Probabilistisk Rörelsesyntes for ojämn terräng i realtid

In modern games and animation there is a constant strive for more realistic motion. Today a lot of games use motion matching and blending with lots of post-processing steps to produce animations, but these methods often require huge amounts of motions clips while still having problems with realistic joint weights. Using machine learning for generating motion is a fairly new technique, and is proving to be a viable option due to the lower cost and potentially more realistic results. Probabilistic models could be suitable candidates for solving a problem such as this as the are able to model a wide variety of motions due to their built-in randomness. This thesis examines a few different models which could be used for generating motion for character when interacting with terrain, such as when walking up an incline. The main models examined in this thesis are the MoGlow model and a CVAE model. Firstly virtual scenes are built in Unity based upon loads of motion capture clips containing movements interacting with the terrain. A character is then inserted into the scene and the animation clips are played. Data is exported consisting of the character’s joint positions and rotations in relation to the surrounding terrain. This data is then used to train the models using supervised learning. Evaluation of this is done by having character go through an obstacles course of varying terrains, generating motion from the different models. After this foot sliding was measured as well as frame-rates. This was also compared to values from that of a selection of motion capture clips. In addition to this a user study is conducted where the users are asked to rate the quality of generated motion in certain video clips. The results show that both the MoGlow and CVAE models produced movement resembling real human movement on uneven terrain, with the MoGlow model’s results being most similar to that of a the motion capture training data. These were also found to be executable at interactive frame-rates, making them suitable for use in video games. / I moderna spel och animationer finns det en konstant strävan efter mer realistisk rörelse. I dagsläget använder många spel teknologier så som rörelsematchning och flera efterprocessering steg för att producera animationer, men ett problem med dessa metoder är att det oftast krävs enorma mängder rörelse klipp för att kunna anpassas till alla möjliga situationer, samtidigt som man ofta tappar lite av vikten i rörelserna. Användet av maskinginlärning för att generera rörelser är en relativt ny utveckling, och ses som en möjlig lösning till dessa problem. Probabilistka modeller är en typ av modeller som kan användas för detta, eftersom att de kan representera en bred variation av rörelser med samma model, på grund av den underligande slumpmässigheten. Det här pappret kommer att undersöka olika probabilistka modeller som kan användas för att generera rörelse när man även tar hansyn till omgivningen, tex när man går i en uppförsbacke. De huvudsakliga modellerna som kommer undersökas är en MoGlow model och en CVAE model. Först så byggs virtuella scener in Unity utifrån en mängd animationsklipp. Därefter stoppas en karaktär in och de här klippen spelas upp. I detta steg är data exporterad som innehåller karaktärens position och benens rotationer i relation till omgivningen. Denna data används sedan för att träna modellerna med väglett lärande. Evaluering är genomförd genom att ha karaktärer gå igenom hinderbanor uppbyggda av varierande terränger, där modeller genererar rörelser för karaktären. Fotglidande och bildhastighet är avmätt och resultatet av metoderna är jämfört med varandra och med utvald data från inspelade träningsdatan. Utöver detta görs även en användarstudie där personer får ge betyg till generarde rörelser utifrån en mängd videoklipp. Resultaten visar att båda MoGlow och CVAE modellen producerar rörelse som liknar realsiska männsklig rörelse vid interaktion mod ojämn terräng. MoGlow modellen visar resultat mest likt den inspelade data. Alla modeller testade går att kör interaktiva bildhastigheter, vilket gör dem lämpliga för använding i dataspel.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-307624
Date January 2021
CreatorsJonsson, Emil
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:875

Page generated in 0.0031 seconds