Return to search

Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc3286
Date12 1900
CreatorsHalcom-Yarberry, Faith Marie
ContributorsBraterman, Paul S., Golden, Teresa D., Marshall, Paul, 1960-, Wilson, Angela K.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsUse restricted to UNT Community, Copyright, Halcom-Yarberry, Faith Marie, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0029 seconds