Return to search

Fluorocarbon Post-Etch Residue Removal Using Radical Anion Chemistry

During fabrication of integrated circuits, fluorocarbon plasma etching is used to pattern dielectric layers. As a byproduct of the process, a fluorocarbon residue is deposited on exposed surfaces and must be removed for subsequent processing. Conventional fluorocarbon cleaning processes typically include at least one plasma or liquid treatment that is oxidative in nature. Oxidative chemistries, however, cause material degradation to next generation low-dielectric constant (low-k) materials that are currently being implemented into fabrication processes. This work addresses the need for alternative fluorocarbon-residue removal chemistries that are compatible with next generation low-k materials. Radical anion chemistries are known for their ability to defluorinate fluorocarbon materials by a reductive mechanism. Naphthalene radical anion solutions, generated using sodium metal, are used to establish cleaning effectiveness with planar model residue films. The penetration rate of the defluorination reaction into model fluorocarbon film residues is measured and modeled. Because sodium is incompatible with integrated circuit processing, naphthalene radical anions are alternatively generated using electrochemical techniques. Using electrochemically-generated radical anions, residue removal from industrially patterned etch structures is used to evaluate the process cleaning efficiency. Optimization of the radical anion concentration and exposure time is important for effective residue removal. The efficiency of removal also depends on the feature spacing and the electrochemical solvent chosen. The synergistic combination of radical anion defluorination and wetting or swelling of the residue by the solvent is necessary for complete removal. In order to understand the interaction between the solvent and the residue, the surface and interfacial energy are determined using an Owens/Wendt analysis. These studies reveal chemical similarities between specific solvents and the model residue films. This approach can also be used to predict residue or film swelling by interaction with chemically similar solvents.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/10583
Date14 December 2004
CreatorsTimmons, Christopher L.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format4547717 bytes, application/pdf

Page generated in 0.0018 seconds