Return to search

Etudes des matériaux magnétiques nanocristallins FeCuNbSiB pour applications en électronique de puissance / Improvement of magnetic properties of nanocristalline magnetic soft alloys dedicated to power electronics

La thèse résulte d'une collaboration entre le laboratoire académique G2Elab et les entreprises Aperam Amilly et Aperam Imphy.Les matériaux magnétiques nanocristallins de type Finemet sont constitués d'une phase nanocristalline et d'une phase amorphe. Cette structure singulière leur confère des anisotropies magnéto-cristalline et magnéto-élastique évanescentes. On peut alors induire, par le biais de recuits adaptés, une anisotropie contrôlée conditionnant la forme du cycle d’Hystérésis et la perméabilité. D’un point de vue applicatif, il s’agit d’une aptitude capitale puisque les caractéristiques du circuit magnétique peuvent être adaptées pour répondre à des cahiers des charges spécifiques. La mise au point des protocoles de recuit mis en œuvre industriellement est cependant empirique.Le sujet de la thèse porte donc sur la mise au point d'un modèle capable de prédire l'amplitude K_u de l'anisotropie induite sur ces matériaux en fonction des paramètres du recuit sous champ (température T_re, champ appliqué H_re) et des caractéristiques structurales (fraction cristalline f_c, taille moyenne D des nanograins, composition y de la phase cristalline Fe1-ySiy). / This thesis is the result of a collaboration between Grenoble Electrical Engineering laboratory, Aperam Alloys Amilly and Aperam Alloys Imphy manufactories.The magnetic materials nanocrystalline Finemet are made of Fe-Si nanocrystallites embedded in a residual amorphous phase. This unconventional crystallographic structure features vanishing magnetocristalline and magnetoelastic anisotropies. As a result, it is possible to induce a cohenrent magnetic anisotropy in such material by suitable annealing treatments, allowing to control the shape of the hysteretic loop and permeability. In view of applications in electronic devices, this attract a great interest, the magnetic circuit characteristics being could be easily adapted by this way to satisfy the requirement of the regarded sensor or actuator.However, the optimization of annealing parameters (temperature, duration, amplitude of applied field…) to fit the desired properties is focused on time and resources consuming, which are based on empirical experience at present.As a result, the aim of this work is to build a model which will be able to predict the magnitude of induced anisotropy according to the field annealing parameters and the structural ones (crystalline fraction f_c, size of nanograins D, and composition of FeSi phase).

Identiferoai:union.ndltd.org:theses.fr/2015GREAT125
Date14 December 2015
CreatorsYao, Yunxia
ContributorsGrenoble Alpes, Roudet, James
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds