Long cycle times in semiconductor manufacturing represent an increasing challenge for the industry and lead to a growing need of break-through approaches to reduce it. Small lot sizes and the conversion of batch processes to mini-batch or single-wafer processes are widely regarded as a promising means for a step-wise cycle time reduction. Our analysis with discrete-event simulation and queueing theory shows that small lot size and the replacement of batch tools with mini-batch or single wafer tools are beneficial but lot size reduction lacks persuasive effectiveness if reduced by more than half. Because the results are not completely convincing, we develop a new semiconductor tool type that further reduces cycle time by lot streaming leveraging the lot size reduction efforts. We show that this combined approach can lead to a cycle time reduction of more than 80%.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25248 |
Date | 29 January 2010 |
Creators | Stubbe, Kilian |
Contributors | Rose, Oliver, Mönch, Lars, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds