The worldwide electronics market is focusing on developing innovative technologies that can lead to denser, more resilient, and tighter board-level integration. The consumer electronics market is trending toward miniaturization, with HDI-PCBs dominating. Electronics shrinking and scaling technology is the prime concern of all manufacturers. The PCBA industry is transforming its production practices which can reduce the solder joints, limit the usage of discrete and bulky components, reduce the packaging factor of printed boards by accommodating the maximum number of ICs, minimize the assembly span, optimize the latency, and so on. However, developments in production processes in the PCB manufacturing industry need more attention than those in Silicon-based (ICs) fabrications. One of the issues in PCB fabrication is utilizing conventional metallization approaches. The majority of manufacturers continue to use standard Copper(Cu) laminates on the base substrate and lithography methods to shape the structures.In recent manufacturing technologies, semi-Additive process (SAP) or modified-SAP (mSAP) methods are being adopted to replace traditional subtractive print-and-etch procedures. To scale down the Lines and Spaces (L\&S) on PCBs comparable to that of IC-level, most smartphone makers use Substrate-like PCB (SLP) using mSAP methods. However, subtractive patterning has been used in the intermediate stages of fabrication in those methods. This thesis demonstrates a fully additive selective metallization-based production approach to bridge this technology gap between IC-level and board-level fabrications. The fabrication process has given the name 'Sequential Build-Up Covalent Bonded Metallisation' (SBU-CBM) method. This dissertation presents a new approach to Cu metallization using a significant step reducing-pattern-transfer process. The patterning method activates a seed layer of CBM polymer chains on a polymer surface with optimal UV-Laser settings. This surface modification enables a strong Copper (Cu) bonding onto the modified surface by Cu-plating. The suggested approach generated a 2.5D surface pattern using a micrometer via laser ablation and subsequent sub-micrometer laser lithography. Furthermore, the surface characterization of each step involved in the fabrication process is analysed and presented to show the sequential growth of layers on top of each other. To investigate the mechanism of the process at the interfaces, characterizations such as EDS, SEM, and XRD characterizations were performed. This PCB manufacturing method can selectively add metallic layers to the finest feature sizes at considerably lower temperatures. Overall, the thesis has addressed two critical aspects i.e. miniaturization of interconnects at board-level and the feasibility of a fully-additive production approach for electronics packaging. First, a subtractive method is shown to achieve Copper interconnects with feature size 3.0$\mu$m. This miniaturization corresponds to 70\% reduction in the feature size from 20 $\mu$m to 3 $\mu$m. Next, the proposed additive production process has produced Cu interconnects with feature sizes of 2.5 $\mu$m L\&S and via of diameter 10 $\mu$m. The scaling of the interconnects was achieved by optimizing the process parameters involved in the proposed fabrication recipe. Second, the sequential build-up (SBU) procedure is adopted to realize the embedded passives with the minimum possible feature size ($<$ 10 $\mu$m). An embedded capacitor and a planar inductor were fabricated. The proposed method can be employed to achieve any desirable pattern on FR-4, and a few of them are shown in the thesis. This additive technique can further be investigated through electrical and reliability assessment to make it an industrially accepted method.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-88609 |
Date | January 2021 |
Creators | Acharya, Sarthak |
Publisher | Luleå tekniska universitet, EISLAB |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds