Return to search

Insights into Stability Aspects of Novel Negative Electrodes for Li-ion Batteries

Demands for high energy-density batteries have sharpened with the increased use of portable electronic devices, as has the focus global warming is now placing on the need for electric and electric-hybrid vehicles. Li-ion battery technology is superior to other rechargeable battery technologies in both energy- and power-density. A remaining challenge, however, is to find an alternative candidate to graphite as the commercial anode. Several metals can store more lithium than graphite, e.g., Al, Sn, Si and Sb. The main problem is the large volume changes that these metals undergo during the lithiation process, leading to degradation and pulverization of the anode with resulting limitations in cycle-life. The Li-ion battery is studied in this thesis with the goal of better understanding the critical parameters determining high and stable electrochemical performance when using a metal or a metal-alloy anode. Various antimony-containing systems will be presented. These represent different routes to circumvent the problems caused by volume change. Sb-compounds exhibit a high lithium storage capability. At most, three Li-ions can be stored per Sb atom, leading to a theoretical gravimetric capacity of 660 mAh/g. Model systems with stepwise increasing complexity have been designed to better understand the factors influencing lithium insertion/extraction. It is demonstrated that the microstructure of the anode material is crucial to stable cycling performance and high reversibility. The relative importance of the various factors controlling stability, such as particle-size, oxide content and morphology, varies strongly with the type of system studied. The cycling performance of pure Sb is improved dramatically by incorporating a second component, Sb2O3. With a critical oxide concentration of ~25%, a stable capacity close to the theoretical value of 770 mAh/g is obtained for over 50 cycles. Cu2Sb shows stable cycling performance in the absence of oxide. Cu9Sb2 has been presented for the first time as an anode material in a Li-ion battery context. Studies of the Solid Electrolyte Interphase (SEI) formed on AlSb composite electrodes show an SEI layer thinner than graphite, and with a clearly dynamic character.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-8537
Date January 2008
CreatorsBryngelsson, Hanna
PublisherUppsala universitet, Institutionen för materialkemi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 405

Page generated in 0.0016 seconds