Manually analysing logfiles is a very time consuming and error-prone effort. By developing a system to automatically analysing the logfiles it is possible to both increase the speed and accuracy of the analysis. This thesis presents a method for automatic anomaly detection in logfiles using statistical analysis and threshold based classification. The presented method uses five different threshold based approaches to identify anomalous entries within a logfile. Each of the five approaches was successful in identifying and reporting perceived anomalies within 805 logfiles provided by Sandvine, it was however not possible to do a formal evaluation of the results due to a lack of a ground truth.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-72931 |
Date | January 2019 |
Creators | Larsson, Daniel |
Publisher | Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.001 seconds