Nesse trabalho são apresentados alguns resultados sobre classificação de Ações Anosov de Rk em (k + 2)variedades fechadas. Obtivemos dois teoremas (Teoremas A e B) que classificam tais ações. Essencialmente, mostramos que a ação será uma Tk1 extensão de um fluxo Anosov. Na demonstração é usada teoria das folheações de codimensão um; técnicas desenvolvidas por Fenley, como o estudo da ação levantada no recobrimento universal e a construção de losangos invariantes nesse espaço; bem como resultados obtidos por Maquera e Barbot, que iniciaram os estudos de Ações Anosov visando a classificação topológica destas / In this work is presented some important results about Anosov actions of Rk in (k + 2)closed manifolds. We obtained two classification theorems (Theorems A and B) which give us, essentially, that the system is a Tk1-extension of an Anosov flow. In order to show that, we used the theory of foliations of codimension one, techniques developed by Fenley, such as study of the lift of the action in the universal cover and the construction of invariant lozenges, what is more, we used some results by Maquera and Barbot, who began the studies of Anosov Actions generalizing some classic results on the way to classificate them
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-03092012-145322 |
Date | 15 June 2012 |
Creators | Arakawa, Vinicius Augusto Takahashi |
Contributors | Apaza, Carlos Alberto Maquera, Barbot, Thierry |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds