The focus of this thesis is to analyse the flight characteristics of the blended wingbody (BWB) unmanned aerial vehicle (UAV) Green Raven currently being developed by students at the Royal Institute of Technology (KTH) in Stockholm,Sweden. The purpose of evaluating a BWB aircraft is due to its potential increasein fuel efficiency and payload compared to conventional aircrafts which would enable more sustainable flights. The analysis is conducted in ANSYS Fluent 2020R2 where the goals are to extrapolate lift, drag and pitching moment coefficients,aerodynamic efficiency and evaluate stall patterns. The analysis is conducted with free stream velocities from 5 m/s to 40 m/s with5 m/s increments at angles of attack from −4◦ to stall plus 4◦. The result of thisthesis is that an analysis have not been able to be conducted due to a lack ofcomputational power. Thusly, the conclusion to this thesis is that to be able toperform a complete analysis of the Green Raven, a more powerful computer needsto be used.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-314555 |
Date | January 2022 |
Creators | Harrisson, Oliver |
Publisher | KTH, Skolan för teknikvetenskap (SCI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:98 |
Page generated in 0.0027 seconds