Return to search

Étude de matériaux photoconducteurs ultra rapides à faible gap et leurs applications dans les dispositifs et systèmes THz

Ce travail de thèse présente les résultats d'une étude des propriétés physiques de semi-conducteurs à faible gap et des caractéristiques de dispositifs de type antenne photoconductrice fabriquée sur de tels matériaux photoconducteurs. Le but de la présente étude est de développer un dispositif amélioré d'émission et de détection de radiation THz pulsée pour des systèmes de spectroscopie THz compacts requérant d'être couplés à des sources laser émettant à 1550 nm.

Des antennes photoconductrices ont été fabriquées sur un substrat photoconducteur (InGaAs et InGaAsP) dont les propriétés physiques ont été modifiées via un procédé de fabrication nécessitant l'implantation d'ions lourds à haute énergie suivit d'un recuit thermique rapide. Ce procédé de fabrication a déjà été mis au point dans le cadre d'un précédent travail de thèse: il donne lieu à une structure recristallisée inhomogène en profondeur qui présente un faible temps de vie des photoporteurs (< 1ps), une grande résistivité ( >1000 Ωcm) et une mobilité de Hall ( >300 cm2V-1s-1) convenable pour la fabrication de dispositifs THz. Dans le cadre du présent travail, une meilleure corrélation entre les propriétés structurales et électroniques du matériau photoconducteur, obtenu selon différentes conditions expérimentales d'implantation et de recuit, a été établie. L'effet des propriétés physiques du substrat sur les caractéristiques des antennes photoconductrices a également été discuté. Le temps de vie et la mobilité des photoporteurs ainsi que la résistivité du matériau ont été déterminés pour différentes conditions de fabrication des substrats photoconducteurs. Des courbes de photoconductivité en fonction de la fréquence des différentes substrats photoconducteurs ont été obtenues à partir des mesures pompe optique - sonde THz. Deux sortes d'implantion ionique ont été effectuées, soit une implantion avec ions de Fe et une co-implantation de Fe et de P. Cette co-implantion vise à maintenir un équilibre stoechiométrique pour les matériaux ternaires. Différentes températures de recuit thermique rapide ont été utilisées. Pour caractériser le degré de cristallisation de chaque matériau et la taille de grain moyenne de ceux-ci, des mesures d'absorption par ellipsométrie ont été effectuées.

Le choix des conditions expérimentales pour la fabrication du substrat de base des antennes repose sur une implantation d'ions de Fe avec une énergie de plus de 2.5 MeV suivi d'un recuit à 500 degrés Celsius conférant au semi-conducteur une mobilité de >5 cm2V-1s-1. Avec cette optimisation des paramètres physiques, un spectromètre térahertz a été réalisé avec deux antennes photoconductrices quaternaire couplées à un laser opérant à 1550 nm. Une plage dynamique de plus de 65 dB allant à 3 THz est obtenue avec une bande passante pouvant atteindre plus de 1.5 THz à 20 dB. L'optimisation des matériaux ternaires (InGaAs) et quaternaires (InGaAsP) à des fins de spectroscopie térahertz est présentée avec différents types d'implantations et de recuit thermique.

Selon les résultats de la présente étude, le matériau quaternaire présente les meilleures caractéristiques pour le développement d'un spectromètre térahertz compact et entièrement fibré.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/10619
Date January 2017
CreatorsPetrov, Branko
ContributorsMorris, Denis
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeThèse
Rights© Branko Petrov, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, http://creativecommons.org/licenses/by-nc-nd/2.5/ca/

Page generated in 0.0027 seconds