Return to search

Zero Divisors among Digraphs

This thesis generalizes to digraphs certain recent results about graphs. There are special digraphs C such that AxC is isomorphic to BxC for some pair of distinct digraphs A and B. Lovasz named these digraphs C zero-divisors and completely characterized their structure. Knowing that all directed cycles are zero-divisors, we focus on the following problem: Given any directed cycle D and any digraph A, enumerate all digraphs B such that AxD is isomorphic to BxD. From our result for cycles, we generalize to an arbitrary zero-divisor C, developing upper and lower bounds for the collection of digraphs B satisfying AxC isomorphic to BxC.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-3119
Date19 April 2010
CreatorsSmith, Heather Christina
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0023 seconds