Return to search

Solid-phase synthesis of molecularly imprinted polymer nanoparticles for protein recognition / Synthèse en phase solide de nanoparticules de polymères à empreintes moléculaires pour la reconnaissance de protéines

Cette thèse décrit la synthèse de nanoparticules de polymères à empreintes moléculaires (MIP, de l’anglais molecularly imprinted polymer) pour la reconnaissance de protéines, par une approche de synthèse en phase solide. Les polymères à empreintes moléculaires sont des récepteurs biomimétiques synthétisés sur mesure par un processus de nanomoulage du polymère autour de la molécule unique. Ils possèdent ainsi des cavités de reconnaissance spécifiques pour leur molécule cible. La technique de l'impression moléculaire pour les petites molécules cibles est bien établie, alors que l'impression de protéines reste encore un défi en raison de la flexibilité et complexité de leur structure native et de leurs nombreux sites fonctionnels, mais aussi en raison de leur faible stabilité dans des conditions inhabituelles. Par conséquent, une approche de synthèse en phase solide a été développée ici où la protéine est immobilisée sur un support avant la synthèse de nanoparticules hydrosolubles de MIP par polymérisation radicalaire. Les MIPs obtenus ont des affinités comparables à celles des anticorps, et des réactivités croisées faibles. Ils possèdent des avantages tels qu'une stabilité meilleure, un coût plus faible et peuvent potentiellement être régénérés et réutilisés, devenant ainsi des alternatives prometteuses aux anticorps naturels. Nous avons fabriqué des MIPs contre des protéases à sérine, telles la trypsine et la kallikréine, mais aussi contre un épitope peptidique de la protéine gp41 du VIH. Des nanogels de MIP thermosensibles ont été synthétisés dans un réacteur sous la forme d’une colonne thermostatée ou une boîte de Pétri, par polymérisation radicalaire initiée par voie thermique ou photochimique. Un simple changement de la température permet de libérer les MIPs de la protéine immobilisée. Ces MIPs sont hydrosolubles en fonction de la température et ont un diamètre inférieur à 100 nm. Leur affinité pour leur cible est élevée, avec un Kd du nano ou picomolaire. Ces 'anticorps synthétiques' ont été appliqués dans des tests d'adsorption sur microbalance à cristal de quartz, mais également comme 'chaperons synthétiques'. Des études préliminaires de la protection des protéines d'une dénaturation thermique ou par un pH défavorable ont été effectuées. L'utilisation d'un iniferter pour initier la photopolymérisation vivante du MIP a permis de synthétiser des nanogels de type core-shell. En introduisant des marqueurs fluorescents dans les MIPs, les tests d’immunoessai dans des fluides biologiques ont été démontrés, ce qui indique le grand potentiel de ces MIPs dans le diagnostic clinique. En conclusion, nous avons développé une nouvelle approche de synthèse de nanoparticules de MIP hydrosoluble ayant une haute affinité pour une protéine, utilisables à la place des anticorps dans des applications dans le monde réel tel que la détection de protéines biomarqueurs dans des échantillons complexes, et potentiellement comme principe actif in vivo. / This thesis describes the synthesis, by a solid-phase synthesis approach, of nanoparticles of molecularly imprinted polymers (MIPs) for the recognition of proteins. Molecularly imprinted polymers are biomimetic receptors synthesized by a nanomolding process of the polymer around single molecules. They therefore possess specific recognition cavities for their target molecule. The technique of molecular imprinting for small target molecules is well established, while protein imprinting remains a challenge due to the flexibility and complexity of their native structure and functional sites, but also because of their low stability under unusual conditions. Therefore, a solid-phase synthesis approach has been developed where the protein is immobilized on a support before the synthesis of water-soluble MIP nanogel particles by radical polymerization. The MIPs obtained have affinities comparable to those of antibodies, and low cross-reactivities. They have advantages such as better stability, lower cost, and can potentially be regenerated and reused, thus becoming promising alternatives to real antibodies. We have synthesized MIPs against serine proteases such as trypsin, and kallikrein, but also against a peptide epitope of the HIV gp41 protein. Thermosensitive MIP nanogels were synthesized in a thermostated column-type reactor or a petri dish, by thermally or photo-initiated radical polymerization. Their thermosensitivity allows the MIPs to be released from the immobilized protein by a simple temperature change. They are water-soluble as a function of temperature and have a diameter of less than 100 nm. Their affinity for their target is strong, with a Kd in the nano or picomolar range. These 'synthetic antibodies' have been applied in binding assays with quartz crystal microbalance, but also as 'synthetic chaperones'. Preliminary studies of the protection of proteins from thermal denaturation or from denaturation by an unfavorable pH have been carried out. The use of an iniferter to initiate the living photopolymerization of MIP made it possible to synthesize nanogels of core-shell type. By introducing fluorescent markers into MIPs, immunoassay applications in biological fluids have been demonstrated, indicating the great potential of these MIPs in clinical diagnostics. In conclusion, we have developed a novel approach to the synthesis of soluble MIP nanoparticles having high affinity for a protein, usable in place of antibodies in real world applications such as the detection of biomarker proteins in complex samples, and potentially as an active principle in vivo.

Identiferoai:union.ndltd.org:theses.fr/2017COMP2349
Date21 April 2017
CreatorsXu, Jingjing
ContributorsCompiègne, Tse Sum Bui, Bernadette, Haupt, Karsten
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0033 seconds