In this thesis we derive the distribution for the first antieigenvalue for a random matrix with distribution W ∼ Wp(n, Ip) for p = 2 and p = 3. For p = 2 we present a proof that the first antieigenvalue has distribution β((n−1)/2, 1). For p = 3 we prove that the probability density function can be expressed using a sum of hypergeometric functions. Besides the main objective, the thesis seeks to introduce the theory of multivariate statistics and antieigenvalues.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-171914 |
Date | January 2020 |
Creators | Calderon, Simon |
Publisher | Linköpings universitet, Matematisk statistik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0063 seconds