Return to search

Antieigenvalues of Wishart Matrices

In this thesis we derive the distribution for the first antieigenvalue for a random matrix with distribution W ∼ Wp(n, Ip) for p = 2 and p = 3. For p = 2 we present a proof that the first antieigenvalue has distribution β((n−1)/2, 1). For p = 3 we prove that the probability density function can be expressed using a sum of hypergeometric functions. Besides the main objective, the thesis seeks to introduce the theory of multivariate statistics and antieigenvalues.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-171914
Date January 2020
CreatorsCalderon, Simon
PublisherLinköpings universitet, Matematisk statistik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0063 seconds