The outer membrane protein OmpA is one of the major outer membrane proteins in many species of bacteria, including the Yersiniae. Our goal was to explore the role of OmpA in Y. pestis. This encompasses the ability of Yersinia to infect and survive within macrophages, as well as to resist antimicrobial compounds. Our laboratory found that a delta ompA mutant is impaired in a macrophage-associated infectivity assay. We also found that OmpA might play a role in the ability of the bacteria to resist antimicrobial peptides, specifically polymyxin B. Aditionally, we assessed the differences in OmpA of Y. pestis and E. coli, and determined that the characteristics we have observed in Y. pestis are unique compared to what has previously been described in E. coli. Our results indicate that Y. pestis OmpA might act through known pathways of antimicrobial resistance such as the PhoPQ two-component regulatory system, although further experiments are needed to determine the precise mechanism of function OmpA. Overall, our project characterizes the different functions of OmpA in Y. pestis, both as a key player in intracellular survival and as a necessary component in conferring resistance to antimicrobial peptides.
Identifer | oai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_theses-1057 |
Date | 01 January 2010 |
Creators | Kaye, Elena Cortizas |
Publisher | Scholarly Repository |
Source Sets | University of Miami |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Theses |
Page generated in 0.0017 seconds