Present throughout all classes of life, antimicrobial peptides (AMPs) confer defense against bacteria, viruses, fungi, and insects. Identifying maize AMPs would provide breeders with a new defense resource. Here, the investigation of maize AMPs is reported. The distribution of AMPs within a panel of ten Mississippi maize inbred lines with varying resistance to Lepidoptera larvae feeding and Aspergillus infection is explored to characterize their observed resistances. Homology data-mining with two comprehensive AMP databases revealed 88 unique maize AMP protein sequences across 81 genes in the MaizeGDB B73 genome assembly. AMP-related polymorphic sites were identified using genomic primers. Analyses with qRT-PCR revealed 8 differentially expressed maize AMP genes. Computational 3D models of AMPs are limited, and models of these eight maize AMP genes were predicted. Two-dimensional electrophoresis gels were used to contrast protein profiles of inbreds with varying resistance to identify regions related to AMPs and other defense-related protein.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3832 |
Date | 10 August 2018 |
Creators | Noonan, Joseph Ali |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0016 seconds