Return to search

Design and Fabrication of Bi2Te3/Sb2Te3 Micro TE-cooler

This paper presents an integrated column-type micro thermoelectric cooler (£g-TEC) constructed with serial connected p-type antimony-tellurium (Sb2Te3) and n-type bismuth-tellurium (Bi2Te3) micro pillars deposited by electrochemical deposited technology. To optimize the power factor, density and uniformity of the TE films and to enhance the reproducibility of £g-TEC device, a cathode with tunable rotary speed and
with accurate current controller has been designed in the electroplating system of this research.
The electroplating deposited Bi2Te3 and Sb2Te3 with an average thickness of 8 £gm, are connected using Cr/Au layers at the hot junctions and cold junctions. The measured Seebeck coefficient and electrical
resistivity are -86 £gV/K and 16 £g£[-m for Bi2Te3 films after annealed at 250¢XC, and are 68 £gV/K and 30 £g£[-m for Sb2Te3 films after annealed at 200¢XC. The optimized power factors of the n-type (2.64¡Ñ10-4 W/K2m) and p-type (2.64¡Ñ10-4 W/K2m) telluride compounds have been demonstrated in this paper. Under 5 volts driven, the integrated £g-TEC device shows average cooling achieved is about 1.3 ¢XC.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0912107-125214
Date12 September 2007
CreatorsShe, Kun-dian
ContributorsI-Yu Huang, Shiang-Hwua Yu, Yu-Cheng Lin, Jin-Chern Chiou
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0912107-125214
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0013 seconds