Plasmonic nanoparticles feature remarkable optical and electronic properties in consequence of the excitation of conduction band electrons by visible light, which leads to collective oscillations. This so called localized surface plasmon resonance (LSPR) is utilized in the fields of photovoltaics, sensing, catalysis and optoelectronics. Especially, the emergence of optical metasurfaces—subwavelength structured surfaces with properties typically not occurring for homogeneous materials—has attracted significant attention for the applications mentioned above. However, their fabrication is usually complex and the materials often lack in situ tunability. Here, a colloidal approach is demonstrated for the preparation of optical metasurfaces with tunable properties. They are based on plasmonic gold nanoparticles, which were coated with three different shell materials to provide three different functionalities when coupled to plasmonic mirrors: i) Dye-labeled silica coatings exhibit strong enhancement of their fluorescent properties, as shown in this extensive single particle study. ii) Hydrogel shells are applied to receive switchable electric and magnetic properties in response to swelling of the gel. iii) Electrochromic polymer coatings facilitate the preparation of anti-reflective metasurfaces that feature tunable efficiency by changing the pH or applying a voltage. In addition, mechano-tunable plasmonic lattices are demonstrated. The material is based on self-assembled gold nanoparticles, which are embedded in a transparent elastomer matrix and feature pronounced surface lattice resonances (SLR). These tunable resonances could be applied for lasing, strain sensing, or controlling catalytic reactions. / Plasmonische Nanopartikel besitzen bemerkenswerte optische und elektronische Eigenschaften, die sie für Anwendungen in Bereichen der Katalyse, Sensorik, Optoelektronik, sowie der Nanooptik prädestinieren. Ihre Eigenschaften beruhen auf der Anregung von Leitungsbandelektronen zu kollektiven Oszillationen durch sichtbares Licht. Diese sogenannte Oberflächenplasmonenresonanz ist insbesondere für optische Metaoberflächen von Interesse, also Materialien mit strukturierten Oberflächen im Größenbereich unterhalb der sichtbaren Wellenlängen, welche Charakteristika aufweisen, die bei homogenen Materialien typischerweise nicht auftreten. Sie werden allerdings häufig mit aufwendigen Methoden hergestellt und sind in situ nicht justierbar. In dieser Arbeit werden kolloidale Ansätze zur Herstellung plasmonischer Metaoberflächen mit einstellbaren optischen und elektronischen Eigenschaften vorgestellt. Das Konzept basiert auf der Verwendung von plasmonischen Goldkernen, die mit drei unterschiedlichen funktionellen Schalen beschichtet und anschließend mit plasmonischen Spiegeln gekoppelt wurden: i) Farbstoffmarkierte Silicapartikel zeigen starke Fluoreszenz-verstärkung, wie in dieser ausführlichen Einzelpartikelstudie nachgewiesen wird. ii) Hydrogelbeschichtungen werden verwendet um schaltbare elektrische und magnetische Eigenschaften mittels Quellung zu erzeugen. iii) Elektrochrome Polymerhüllen fungieren als Antireflexschicht auf Goldoberflächen, deren Extinktion sich mittels Anlegen einer Spannung oder durch pH-Änderungen einstellen lässt. Neben diesen Ansätzen werden mechanisch einstellbare plasmonische Gitterstrukturen vorgestellt. Die selbstassemblierten und in transparentem Elastomer eingebetteten Goldnanopartikel weisen eine ausgeprägte Oberflächengitterresonanz auf. Diese kann für sensorische Zwecke in den Bereichen der Mikromechanik und der Katalyse, sowie für abstimmbare Laser verwendet werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71573 |
Date | 23 July 2020 |
Creators | Brasse, Yannic |
Contributors | Fery, Andreas, Gaponik, Nikolai, Technische Universität Dresden, Leibniz-Institut für Polymerforschung Dresden e.V. |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds