The classical description of the innate antiviral response involves the production of type I interferon (IFN) and the subsequent expression of hundreds of interferon stimulated genes (ISGs), which cooperatively repress viral replication and spread. More recently, an IFN-independent antiviral response has also been described, in which the entry of an enveloped virus induces a subset of ISGs without requiring the production of IFN, although the details of this response remain unclear. In this work, multiple approaches were used to further characterize antiviral signaling pathways. Initially, the potential involvement in the IFN-independent response of the small GTPase Rac1, which has been implicated in both viral entry and antiviral signaling, was investigated. Here, Rac1 was shown to have a possible function in the negative regulation of ISG expression, although technical complications prevented definitive conclusions. As an alternative strategy to identify novel aspects of antiviral signaling, the mechanism of action of ICP0, a herpes simplex virus (HSV) protein involved in innate immune evasion, was investigated. Although ICP0 is generally thought to perform its actions in the nucleus, by tagging proteins for proteasome-mediated degradation via the E3 ubiquitin ligase activity of its RING finger domain, here it was shown that not only does cytoplasmic ICP0 have a RING-dependent but proteasome-independent ability to block antiviral signaling, but also that ICP0 has a previously unknown RING-independent function in the promotion of viral replication in the cytoplasm. To further investigate the cytoplasmic activities of ICP0, proteins interacting with ICP0 in the cytoplasm were identified using quantitative mass spectrometry. This revealed several intriguing binding partners for ICP0, including WDR11, a poorly-characterized cellular protein which was shown to undergo a dramatic relocation during HSV infection, although it was not required for viral replication in cultured cells. Therefore, this study has uncovered several new and unexpected insights into ICP0 behavior. / Thesis / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16155 |
Date | 11 1900 |
Creators | Taylor, Kathryne E. |
Contributors | Mossman, Karen L., Biochemistry |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds