Return to search

Direction Finding and Beamforming Techniques using Antenna Array for Wireless System Applications

This thesis is concentrated on the Angle / Direction of Arrival (A/DOA) estimation and Beamforming techniques that can be used in the current and future engineering applications such as
tracking of targets, wireless mobile communications, radar systems, etc. This thesis firstly investigates different types of AOA and beamforming techniques. A comprehensive comparison between the common AOA algorithms is performed to evaluate the estimation accuracy and
illustrate the computational complexity of each algorithm. The effect of mutual coupling between
the radiators and the impact of the position-error of the antenna elements on the estimation
accuracy is also studied.
Then, several new efficient AOA methods for current wireless localisation systems are proposed. The estimation accuracy and computational complexity are compared with well-known
AOA methods over a wide range of scenarios. New methodologies for Covariance Matrix (CM)
sampling are proposed to enhance and improve operational performance without increasing the
computational burden. A new beamforming algorithm is proposed and implemented on a compact mm-Wave linear and planar antenna arrays to enhance the desired signal and suppress
the interference sources in wireless communication systems.
The issue of asset tracking in dense environments where the performance of the Global Positioning System (GPS) becomes unavailable or unreliable is addressed in the thesis as well. The
proposed solution uses a low-profile array of sensors mounted on a finite conducting ground. A
compact-size omnidirectional spiral sensor array of six electrically small dual-band antenna elements was designed to operate in the 402 and 837 MHz spectrum bands. For the lower band,
a three-element superposition method is applied to support the estimated AOA whereas six
sensors are considered for the higher band. An efficient and low complexity Projection Vector
(PV) AOA method is proposed. An Orthogonal Frequency Division Multiplexing (OFDM) modulation is integrated with the PV technique to enhance the estimation resolution. The system was
found to be suitable for installation on top of vehicles to localise the position of assets. The proposed system was tested to track non-stationary objectives, and then two scenarios were investigated: outdoor to outdoor and outdoor to indoor environments using Wireless In-Site Software. The results confirm that the proposed tracking system works efficiently with a single snapshot. / Higher Commission for Education Development (HCED) in Iraq
Basra Oil Company
Ministry of Oil

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18747
Date January 2019
CreatorsAl-Sadoon, Mohammed A.G.
ContributorsAbd-Alhameed, Raed, Jones, Steven M.R., Noras, James M.
PublisherUniversity of Bradford, Faculty of Engineering and Informatics
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0018 seconds