Return to search

O Laplaciano da aplicação de Gauss de uma hipersuperfície imersa em uma variedade homogênea

Um resultado bem conhecido para variedades diferenciáveis imersas no Rn+1 é que elas têm curvatura média constante se, e somente se, a aplicação de Gauss é harmônica (Teorema de Ruh-Vilms). Tal resultado é uma consequência direta da fórmula: O objetivo desse trabalho é estender tal fórmula para um contexto mais geral, a saber uma hipersuperfície M imersa em um quociente de um grupo de Lie G por um subgrupo H compacto, de tal forma que o resultado obtido por Ruh- Vilms ainda seja válido. Assumiremos como hipótese que G terá uma métrica pseudo-Riemanniana bi-invariante e que exista um campo de vetores n normal a M satisfazendo /n,n/ = 1 em M. Os resultados obtidos nesta dissertação são baseados em dois trabalhos: Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric e Gauss Map Harmonicity and Mean Curvature of a Hypersurface in a Homogeneous Manifold, aqui denotados por [1] e [2]. Nosso resultado principal (Teorema 2) vem a generalizar o Teorema 4.3 de [2], substituindo a hipótese da métrica Riemanniana por uma métrica pseudo-Riemanniana. / A well known result for immersed manifolds in Rn+1 is the Ruh-Vilms Theorem, which states that a manifold has constant mean curvature if and only if its Gauss map is harmonic. This result is an immediate consequence of the formula: This work intends to extend this formula for the more general case of an immersed hypersurface M in a quotient of a Lie Group G by a compact Lie subgroup H, in order to generalize Ruh-Vilms Theorem for such ambient space. We will assume that G has a semi-Riemannian bi-invariant metric, and that there exists a vector eld normal to M which satis es /n,n/ = 1 in M. The results obtained on this work are based in two papers: Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric and Gauss Map Harmonicity and Mean Curvature of a Hypersurface in a Homogeneous Manifold, cited in this work as [1] and [2]. Our main result (Theorem 2) generalizes Theorem 4.3 of [2], replacing the Riemannian metric in the hypothesis with a semi-Riemannian metric.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/34202
Date January 2011
CreatorsRamos, Álvaro Krüger
ContributorsRipoll, Jaime Bruck
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds