Return to search

Reduccion del grado en aplicaciones de Keller / Reducción del grado en aplicaciones de Keller

The polynomial maps whose Jacobian determinant is equal to 1 are called Keller maps. The Keller Jacobian conjecture claims that every Kellermap is injective. This conjecture is true for polynomials whose degree is less than or equal to two. In this paper we prove that the general casereduces to the study of the injectivity of maps of the form z 7! z+H(z),where the nonzero components of H are homogeneous polynomials of degree three, and every Jacobian matrix DH(z) is nilpotent. / A las aplicaciones polinomiales con el determinante de su matriz jacobiana igual a 1 se las llama aplicaciones de Keller. Segun la conjetura jacobiana de Keller, cada aplicacion de Keller es inyectiva. Tal conjetura es verdadera para las aplicaciones polinomiales de grado menor o igual a dos. En el presente trabajo tambien se muestra que el caso general se reduce a estudiar la inyectividad de aplicaciones de la forma z 7! z +H(z); donde las componentes no nulas de H son polinomios homogéneos de grado tres y cada matriz Jacobiana DH(z) es nilpotente.

Identiferoai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/95582
Date25 September 2017
CreatorsFernández Sánchez, Percy, Rabanal, Roland
PublisherPontificia Universidad Católica del Perú
Source SetsPontificia Universidad Católica del Perú
LanguageEspañol
Detected LanguageSpanish
TypeArtículo
FormatPDF
SourcePro Mathematica; Vol. 28, Núm. 55 (2014); 41-56
RightsArtículo en acceso abierto, Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.002 seconds