En la presente investigación se implementó una aplicación web basada en Machine Learning para predecir la demanda de productos en una empresa ferretera, utilizando la metodología ágil SCRUM para el desarrollo del producto y sus iteraciones; adicionalmente, se determinó al algoritmo de regresión lineal como el más óptimo y se lo entrenó con data histórica de ventas de tres años, tomando en cuenta el método de clasificación ABC para centrar la demanda en los productos de la categoría A, que son
los que generan mayor rentabilidad. La aplicación web integró exitosamente el algoritmo de regresión lineal y demostró un alto grado de precisión (87.64%) al evaluarlo con la métrica MAPE; se validaron los criterios de usabilidad según la norma ISO 25010, obteniendo un cumplimiento alto (90%) en los seis criterios evaluados. Con la ayuda de expertos en desarrollo de software, se verificó el cumplimiento de los requisitos definidos, asegurando la calidad y funcionalidad de la aplicación, concluyendo que su
implementación basada en Machine Learning brinda una herramienta confiable y precisa para predecir la demanda de productos, apoyando la toma de decisiones en la gestión de inventario y generando una mayor rentabilidad al negocio.
Identifer | oai:union.ndltd.org:usat.edu.pe/oai:tesis.usat.edu.pe:20.500.12423/6817 |
Date | January 2023 |
Creators | Martinez Soplapuco, Lisle Jose Alonso |
Contributors | Reyes Burgos, Karla Cecilia |
Publisher | Universidad Católica Santo Toribio de Mogrovejo, PE |
Source Sets | Universidad Catolica Santo Toribio de Mogrovejo |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/bachelorThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0104 seconds