Le réchauffement climatique cause plusieurs modifications abiotiques et biotiques dans les milieux naturels. La hausse de la température de l’eau cause une diminution de l’oxygène dissous dans les lacs et augmente la quantité de zone hypoxique observée. Une autre conséquence de la hausse de la température est l’augmentation du métabolisme et de la consommation d’oxygène des espèces ectothermes dont les poissons et les parasites. Le parasitisme est omniprésent dans les réseaux trophiques et a un effet néfaste sur l’hôte affecté. Les parasites et l’hypoxie peuvent limiter la portée aérobie (AS) des poissons pour la réalisation d’activités journalières. Ainsi, cette étude analyse l’effet dans le temps d’une infection de trématodes causant la maladie du point sur le métabolisme et sur la tolérance hypoxique de l’hôte puisque le développement de ces parasites suggère un effet sur le poisson qui varie selon le temps de résidence des parasites. Nous avons utilisé des crapets-soleil (Lepomis gibbosus) infectés par ces trématodes comme système modèle. Nous avons émis l'hypothèse que l'infection parasitaire réduirait la portée aérobie et la tolérance à l'hypoxie des poissons en fonction du temps du développement de l’infection. Afin d’étudier cette relation hôte-parasite, des tests de respirométrie et d’hypoxie critique ont été performés à cinq moments lors des deux premiers mois suivant l’infection. Les traits métaboliques aérobies (taux métabolique standard et maximal, AS), des indices de la tolérance hypoxique et du métabolisme anaérobiques (tension critique d’oxygène, pression partielle d’oxygène entraînant la perte d’équilibre, la concentration de lactate) et le taux d’hématocrite sont les variables analysées à l’aide de la respirométrie et de prélèvements sanguins. Nous démontrons ici que l’infection expérimental de ces trématodes n’affecte ni la portée aérobie ni la tolérance hypoxique et ce indépendamment du temps de développement du parasite. Un faible effet temporel, mais significatif, est observé entre les premiers jours d’expérimentations et les derniers, des différences principalement dues aux faibles différences non significatives des taux métaboliques standards et maximaux. Le stress induit par captivité et l’effet des changements saisonniers sur les taux métaboliques sont possiblement en cause. Pour l’instant, selon les conditions environnementales actuelles, le crapet-soleil démontre une résilience à l’infection parasitaire ainsi qu’à l’hypoxie. / Global warming is causing several abiotic and biotic changes in natural environments. The rise in water temperature causes a reduction in dissolved oxygen in lakes and increases the amount of hypoxic zone observed. Another consequence of rising temperatures is the increased metabolism and oxygen consumption of ectothermic species, including fish and parasites. Parasitism is ubiquitous in food webs and has a detrimental effect on the affected host. Parasites and hypoxia can limit the aerobic range (AS) of fish for daily activities. Thus, this study analyzes the effect over time of a trematode infection causing the blackspot disease on the metabolism and hypoxic tolerance of the host since the development of these parasites suggests an effect on the fish that varies according to the residence time of the parasites. We used sunfish (Lepomis gibbosus) infected with these trematodes as a model system. We hypothesized that parasite infection would reduce the aerobic range and hypoxia tolerance of fish as a function of the time of infection development. Respirometry and critical hypoxia tests were performed at five time points during the first two months post-infection to investigate this host-parasite relationship and its impact over time. Aerobic metabolic traits (standard and maximum metabolic rate, aerobic range), indices of hypoxic tolerance and anaerobic metabolism (critical oxygen tension, partial pressure of oxygen leading to loss of equilibrium, lactate concentration) and hematocrit levels were analyzed using respirometry and blood sampling. We demonstrate here that experimental infection with trematodes affects neither aerobic range nor hypoxic tolerance independently of parasite development time. A small but significant temporal effect is observed between the first and last days of experimentation, differences mainly due to small non-significant differences in standard and maximum metabolic rates. This may be due to stress induced by captivity and seasonal changes affecting metabolic rates. For now, considering actual environmental conditions, sunfish show high resiliency to parasitic infection and to hypoxia.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/33049 |
Date | 12 1900 |
Creators | Chauvette, Rémi |
Contributors | Regan, Matthew, Binning, Sandra Ann |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0026 seconds