A Mobile Cloud Computing (MCC) system is a cloud-based system that is accessed by the users through their own mobile devices. MCC systems are emerging as the product of two technology trends: 1) the migration of personal computing from desktop to mobile devices and 2) the growing integration of large-scale computing environments into cloud systems. Designers are developing a variety of new mobile cloud computing systems. Each of these systems is developed with different goals and under the influence of different design constraints, such as high network latency or limited energy supply.
The current MCC systems rely heavily on Computation Offloading, which however incurs new problems such as scalability of the cloud, privacy concerns due to storing personal information on the cloud, and high energy consumption on the cloud data centers. In this dissertation, I address these problems by exploring different options in the distribution of computation across different computing nodes in MCC systems. My thesis is that "the use of design and simulation tools optimized for design space exploration of the MCC systems is the key to optimize the distribution of computation in MCC."
For a quantitative analysis of mobile cloud computing systems through design space exploration, I have developed netShip, the first generation of an innovative design and simulation tool, that offers large scalability and heterogeneity support. With this tool system designers and software programmers can efficiently develop, optimize, and validate large-scale, heterogeneous MCC systems. I have enhanced netShip to support the development of ever-evolving MCC applications with a variety of emerging needs including the fast simulation of new devices, e.g., Internet-of-Things devices, and accelerators, e.g., mobile GPUs. Leveraging netShip, I developed three new MCC systems where I applied three variations of a new computation distributing technique, called Reverse Offloading. By more actively leveraging the computational power on mobile devices, the MCC systems can reduce the total execution times, the burden of concentrated computations on the cloud, and the privacy concerns about storing personal information available in the cloud. This approach also creates opportunities for new services by utilizing the information available on the mobile device instead of accessing the cloud.
Throughout my research I have enabled the design optimization of mobile applications and cloud-computing platforms. In particular, my design tool for MCC systems becomes a vehicle to optimize not only the performance but also the energy dissipation, an aspect of critical importance for any computing system.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D84Q7TV9 |
Date | January 2016 |
Creators | Jung, Young Hoon |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0022 seconds