Return to search

Inferring environmental representations through limited sensory data with applications to sensor network self-calibration

This thesis addresses the problem of using distributed sensing for automatically inferring a representation of the environment, i.e. a map, that can be useful for the self-calibration of intelligence systems, such as sensor networks. The information recovered by such a process allows typical applications such as data collection and navigation to proceed without labour intensive input from a human technician. Simplifying the deployment of large scale sensor networks and other intelligent systems will effectively reduce their cost and improve their widespread availability and hence aid their practical application to tasks such as the monitoring of carbon emissions and greenhouse gases. In our research we focus on algorithms and techniques for recovering two types of information from the immediate environment: topology information that indicates physical connectivity between regions of interest from the point of view of a navigating agent; and a probability distribution function (PDF) describing the position of components of the intelligent system. We consider situations where data is collected from systems that comprise of: a number of stationary network components; stationary network components augmented with a mobile robot; or a mobile robot only. Our approaches are, for the most part, based on statistical methods that employ stochastic sampling techniques to provide approximate solutions to problems for which computing the optimal or exact solution is intractable. Numerical simulations and experiments conducted on hardware suggest that this research has promising real world applications in the area of sensor network self-configuration. / Ce thèse s'adresse au problème de l'emploi de la détection dispersée pour déduire automatiquement une représentation de l'environnement, c'est-à-dire une carte, qui peut servir dans l'autocalibrage des systèmes intelligents tels que les réseaux des capteurs. L'information récupérée par un tel processus permet aux applications typiques telle que la collecte des données et la navigation de continuer sans une contribution de main d'œuvre de la part d'un technicien humain. Simplifier la répartition en grand des réseaux de capteurs et d'autres systèmes intelligents réduira effectivement leur coût et améliora leur disponibilité répandue, donc il facilitera leur application pratique aux tâches comme le contrôle des émissions de carbone et les gaz à effet de serre.Dans nos recherches nous nous concentrons sur les algorithmes et les techniques pour récupérer deux types d'information de l'environnement immédiat : l'information topologique qui indique la connectivité physique entre les régions d'intérêt du point de vue d'un agent navigateur; et une fonction de dispersion de probabilité (PDF) qui décrit la position des élément du système intelligent. Nous considérons les situation où les données se recueillent des systèmes composés de: plusieurs éléments fixes du réseau; des éléments fixes du réseau augmentés d'un robot mobile; un robot mobile seulement. Nos approches sont, pour la plupart, fondées sur des méthodes statistiques qui emploient des techniques stochastiques d'échantillonnage pour fournir des solutions approximatives aux problèmes dont le calcul d'une solution exacte ou optimale reste réfractaire. Les simulations numériques et les expériences exécutées au matériel suggèrent que ces recherches promettent des applications actuelles et pratiques dans le domaine d'autocalibrage des réseaux de capteurs.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.66780
Date January 2009
CreatorsMarinakis, Dimitrios
ContributorsGregory L Dudek (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (School of Computer Science)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0075 seconds