Return to search

Laminar flame speed of jet fuel surrogates and second generation biojet fuel blends

An understanding of the fundamental combustion properties of alternative fuels is essential for their adoption as replacements for non-renewable sources. In the aviation industry, a promising candidate is hydrotreated renewable jet fuel (HRJF). HRJF can be synthesized in a sustainable and economically viable manner from long chain fatty-acid methyl esters found in jatropha and camelina seed, and the laboratory-scale characterization of the combustion properties of HRJF is an active area of research. Such research is motivated, in part, by the chemical complexity of biojet fuels which are composed of hundreds of hydrocarbon species, similar to conventional aviation grade fuels. The laminar flame speed has been identified as an important combustion parameter for many combustion applications, and is especially relevant to the aviation community. The laminar flame speed is also an important parameter in the validation of chemical kinetic mechanisms, as it is representative of the chemical reactivity of the fuel. In this study, laminar, atmospheric pressure, premixed stagnation flames were used to determine the laminar flame speed of HRJF blended in varying ratios with Jet A-1 aviation fuel, requiring a combination of experimental and numerical methods. Jet A-1 was also studied to allow for comparative benchmarking of the biojet blends. Experiments were carried out in a jet-wall stagnation flame geometry at a pre-heated temperature of 400 K. Centerline velocity profiles were obtained using particle image velocimetry, from which the strained reference flame speeds were determined. Simulations of each experiment were carried out using the CHEMKIN-PRO software package together with a detailed chemical kinetic mechanism, with the specification of necessary boundary conditions taken entirely from experimental measurements. A direct comparison method was used to infer the true laminar flame speed from the experimental and numerical strained reference flame speeds. In order to model the chemical kinetics of Jet A-1 and the biojet blends, it was necessary to identify a surrogate blend that emulates the reactivity of the biojet fuels, while consisting of a much smaller number of pure compounds. Published data shows significant discrepancies for many jet fuel surrogate components, motivating their inclusion in this study. Thus, laminar flame speeds were also obtained for three candidate jet fuel surrogate components: n-decane, methylcyclohexane and toluene, which are representative of the alkane, cycloalkane and aromatic components of conventional aviation fuel, respectively. Results for the pure surrogate components were used to generate a suitable surrogate blend for the biojet blends. The results form this work resolve conflicting laminar flame speed data for the surrogate components, which is essential for the further development of chemical kinetic mechanisms and contributes to the surrogate modelling of jet fuel combustion. The laminar flame speeds of the biojet blends are compared to the Jet A-1 benchmark over a wide range of equivalence ratios. The biojet blends are found to behave similarly to Jet A-1 for low to moderate levels of blending, but show a marked disagreement otherwise. / La comprehension des proprietes de combustion fondamentales des carburants alternatifs est essentielle pour leur adoption en remplacement des sources non renouvelables. Dans le secteur de l'aviation, un candidat encourageant est le carburant d'avion renouvelable hydrotraite (HRJF). HRJF peuvent etre synthetiser de maniere durable et economique en utilisant des esters methyliques a longue cha^ne procure de gras trouves dans les grains de jatropha et de cameline, et la caracterisation a l'echelle laboratoire des proprietes de combustion du HRJF est un domaine de recherche actif. Cette recherche est motivee, en partie, par la complexite chimique des combustibles d'avion biologiques qui sont composees de centaines d'especes d'hydrocarbures conventionnels, semblables a des combustibles d'aviation conventionnel. La vitesse de flamme laminaire a ete identie comme un parametre de combustion important pour de nombreuses applications de combustion, et est particulierement pertinent pour la communaute aeronautique. La vitesse de flamme laminaire est egalement un parametre important dans la validation des mecanismes de cinetiques chimiques, car il est representatif de la reactivite chimique du combustible. Dans cette etude, les flammes laminaire en stagnation, sous la pression atmospherique, et premelangees ont ete utilises pour determiner la vitesse de flamme laminaire de HRJF melanges dans des proportions variables avec du carburant de l'aviation Jet A-1, ce qui exigeait une combinaison de methodes experimentales et numeriques. Jet A-1 a egalement ete etudie pour permettre une analyse comparative des melanges de carburants. Des experiences ont ete menees dans une geometrie de vjet-mur flamme de stagnation a une temperature prechauee de 400 K. Des prols de vitesse centrales ont ete obtenus en utilisant la velocimetrie par image de particules, qui ont permit de determiner les vitesses de flammes de reference tendues. Simulations de chaque experience ont ete realisees en utilisant le logiciel CHEMKIN-PRO en conjunction avec un mecanisme chimique cinetique detaille, avec la specication de conditions aux limites necessaires prises entierement des mesures experimentales. Une methode de comparaison directe a ete utilisee pour deduire la vrai vitesse de flamme laminaire en utilisant les vitesses de flamme de reference tendues experimentales et numeriques. Pour modeliser la cinetique chimique du Jet A-1 et les melanges biologiques, il etait necessaire d'identier un melange de substitution qui emule la reactivite des carburants, tout en comprenant un nombre beaucoup plus restreint de combustibles purs. Les donnees publiees montrent des ecarts importants pour nombreux de ces composants de carburant de substitution, motivant leur inclusion dans cette etude. Ainsi, la vitesse de flamme laminaire a ete egalement obtenus pour trois candidats de composants substitutus pour la carburant d'aviation: n-decane, methylcyclohexane et toluene, qui sont representatifs des composants d'alcane, cycloalcane et aromatiques du carburant d'aviation conventionnel, respectivement. Les resultats pour les composants purs de substitution ont ete utilises pour generer un melange adequat de substitution pour les melanges de carburant biologiques. Les resultats de ce travail resout les conflits entre les donnees de vitesse de flamme laminaire pour les composants de substitution, qui est essentiel pour le developpement des mecanismes de cinetiques chimiques et contribue a la modelisation des carburants vide substitution de la combustion. Les vitesses de flamme laminaire des melanges de carburants biologiques sont comparees a Jet A-1 a dierents rapports d'equivalence. Les melanges biologiques comportent de facon similaire a Jet A-1 pour les niveaux de melange faible a modere, mais montrent un important ecart autrement.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.116976
Date January 2013
CreatorsMunzar, Jeffrey
ContributorsJeffrey Bergthorson (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mechanical Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0033 seconds