Return to search

Nonlinear fluid-structure interaction : a partitioned approach and its application through component technology / Interaction fluide-structure non-linéaire : une approche partitionnée et son application par la technologie des composants

Au cours de ces travaux de thèse, la résolution de problèmes non-linéaires en interaction forte entre une structure et un fluide a été étudiée par une approche partitionnée. La stabilité, la convergence et les performances de différents schémas de couplages explicites et implicites ont été explorées. L'approche partitionnée autorise la réutilisation des codes existants dans un contexte plus général. Un des objectifs de nos travaux est de les utiliser comme des boites noires, dont on n'a pas le besoin de connaitre le fonctionnement interne. A cette fin, la technologie des composants et le middleware CTL ont été utilisés. Ainsi, deux composants basés sur des codes existants pour le fluide et la structure ont été développés puis couplés par une approche de type code maître.Les performances de différentes architectures de composants aussi bien que la communication entre composants parallélisés sont décrites dans ce document. La réutilisation de codes existants permet de profiter au plus vite des modèles avancés développés de manière spécifique pour nos sous-problèmes. Pour la partie solide, par exemple, il est possible d'utiliser différents modèles éléments finis en grandes déformations avec des matériaux non-linéaires. Pour la partie fluide, nous avons choisi une approche arbitrairement Lagrangienne-Eulérienne, et la résolution par volumes finis. Différents régimes d'écoulements instationnaires aussi bien incompressibles (modélisés alors par les équations de Navier-Stokes) qu'à surfaces libres sont ici considérés. La description de phénomènes tels que le déferlement des vagues et leur impact sur des structures est ainsi rendu possible / A partitioned approach is studied to solve strongly coupled nonlinear fluid structure interaction problems. The stability, convergence and performance of explicit and implicit coupling algorithms are explored. The partitioned approach allows to re-use existing codes in a more general context. One purpose of this work is to be able to couple them as black-boxes. To that end, the scientific software component framework CTL is considered. Therefore a fluid and a structure component based on existing software are developed and coupled with a master code approach. Computational performance of different remote calls and parallel implementation of components are also depicted herein. The re-use of existing software allows to couple advanced models developed for both sub-problems. In this work, the structure part is solved by the Finite Element Method, with the possibility to use different non-linear and large deformation behaviors. For the fluid part, examples modeled with an arbitrary Lagrangian Eulerian formulation are considered, solved with a finite volume method. The models used are first transient incompressible flows described by the Navier-Stokes equation, then free surface flows. With the latter, the impact of sloshing and breaking waves on model structures can be computed / In dieser Doktorarbeit wird ein partiotionierter Ansatz zur Lösung nichlinearer stark gekoppelter Fluid-Struktur-Interaktionsprobleme behandelt. Dabei werden die Stabilität, die Konvergenz und die Performanz expliziter und impliziter Kopplungsalgorithmen untersucht. Der partitionierte Ansatz ermöglicht die Wiederverwendung von existierender Software in einem allgemeineren Kontext. Ein Ziel dieser Arbeit ist hierbei die Nutzung dieser Software als Blackboxen. Hierzu verwenden wir das komponentenbasierte Framework CTL. Die existierenden Simulationscodes für das Strömungs- und das Strukturproblem werden als CTL Komponenten umgesetzt und über einen Mastercode gekoppelt. Die Performanz des Gesamtsystems wird hinsichtlich unterschiedlicher Komponentenbindungen und der parallelen Implementierungen der Simulationskomponenten analysiert. Existierende Simulationscodes weisen mitunter viele Mannjahre Entwicklungszeit auf, bieten auf die einzelnen Probleme abgestimmte numerische Verfahren und unterstützen unterschiedliche Modelle des betrachteten physikalischen Fachgebietes. Daher ist eine Wiederverwendung erstrebenswert. Der Strukturteil wird über die Finite Elemente Methode approximiert, wobei groé Deformationen und verschiedene nicht-lineare Materialmodelle unterstützt werden. Auf der Strömungsseite werden Beispielprobleme (von instationären inkompressiblen Strömungen zu Strömungen mit freier Oberäche) herangezogen, die mit der Arbitrary Lagrangian Eulerian Methode formuliert und der Finite Volumen Methode diskretisiert werden

Identiferoai:union.ndltd.org:theses.fr/2009PEST1067
Date20 November 2009
CreatorsKassiotis, Christophe
ContributorsParis Est, Duhamel, Denis, Ibrahimbegovic, Adnan, Matthies, Hildegard
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds