Este trabalho faz parte do projeto de uma ferramenta denominada FIP (Ferramenta Inteligente de Apoio à Pesquisa) para recuperação, organização e mineração de grandes coleções de documentos. No contexto da ferramenta FIP, diversas técnicas de Recuperação de Informação, Mineração de Dados, Visualização de Informações e, em particular, técnicas de Extração de Informações, foco deste trabalho, são usadas. Sistemas de Extração de Informação atuam sobre um conjunto de dados não estruturados e objetivam localizar informações específicas em um documento ou coleção de documentos, extraí-las e estruturá-las com o intuito de facilitar o uso dessas informações. O objetivo específico desenvolvido nesta dissertação é induzir, de forma automática, um conjunto de regras para a extração de informações de artigos científicos. O sistema de extração proposto, inicialmente, analisa e extrai informações presentes no corpo dos artigos (título, autores, a filiação, resumo, palavras chaves) e, posteriormente, foca na extração das informações de suas referências bibliográficas. A proposta para extração automática das informações das referências é uma abordagem nova, baseada no mapeamento do problema de part-of-speech tagging ao problema de extração de informação. Como produto final do processo de extração, tem-se uma base de dados com as informações extraídas e estruturadas no formato XML, disponível à ferramenta FIP ou a qualquer outra aplicação. Os resultados obtidos foram avaliados em termos das métricas precisão, cobertura e F-measure, alcançando bons resultados comparados com sistemas similares / This dissertation is part of a project of a tool named FIP (an Intelligent Tool for Research Supporting). FIP is a tool for retrieval, organization, and mining large document collections. In the context of FIP diverse techniques from Information Retrieval, Data Mining, Information Visualization, and particularly Information Extraction, focus of this work, are used. Information Extraction systems deal with unstructured data looking for specific information in a document or document collection, extracting and structuring them in order to facilitate their use. The specific objective presented in this dissertation is automatically to induce a set of rules for information extraction from scientific articles. The proposed extraction system initially analyzes and extracts information from the body of the articles (heading, authors, affiliation, abstract, and keywords) and then extracts information from each reference in its bibliographical references. The proposed approach for information extraction from references is a new technique based on the strategy of part-of-speech tagging. As the outcome of the extraction process, a database with extracted and structured information in XML format is made available for the FIP or any other application. The system has been evaluated using measures of Precision, Recall and F-measure, reaching good results compared to similar systems
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-21062007-144352 |
Date | 08 May 2007 |
Creators | Alberto Cáceres Álvarez |
Contributors | Alneu de Andrade Lopes, Maria das Graças Volpe Nunes, Renata Vieira |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds