Return to search

Transposon dynamics in self- and cross-fertilizing plant populations

The population dynamics of transposons in self- and cross-fertilizing plant populations are investigated both theoretically and empirically. Models were developed to evaluate the influence of host breeding system on transposon populations. Modeling results suggest that the selfing rate is likely to have important effects on the abundance and polymorphism patterns of transposable elements in plant genomes. A primary characterization of diversity and abundance of transposons in the self-pollinating species Arabidopsis thaliana was conducted using genomic sequencing data, providing strong evidence for recent element mobility. Utilizing this information, a PCR-based approach was implemented to examine transposon dynamics in populations of Arabidopsis thaliana and its outcrossing relative, Arabidopsis lyrata. The results provide evidence for the importance of purifying selection in controlling transposon abundance in outcrossing populations, but not in selfers. Differences observed between the species are consistent with the hypothesis that host breeding systems influence the selective pressure acting on transposons.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.33453
Date January 2000
CreatorsWright, Stephen, 1975-
ContributorsSchoen, Daniel J. (advisor), Bureau, Thomas E. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001779258, proquestno: MQ70759, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds