Return to search

Perturbations of arachidonic acid metabolism in the metabolic syndrome

[Truncated abstract] Arachidonic acid is oxidised in vivo by non-enzymatic (free radical) or enzymatic pathways (cyclooxygenase, lipoxygenase, and cytochrome P450) to form a range of biologically active eicosanoids. Specifically, arachidonic acid is metabolised by cytochrome P450 -hydroxylase to produce vasoactive 20-hydroxyeicosatetraenoic acid (20-HETE), and by 5-lipoxygenase to produce proinflammatory leukotriene B4 (LTB4), which can further be metabolised by -hydroxylase to from 20-OH-LTB4 and 20-COOH-LTB4. F2-Isoprostanes (F2-IsoPs) are produced through free radical attack on arachidonic acid and have been recognised as the most reliable markers of lipid peroxidation in vivo. The metabolic syndrome (MetS) is characterised by abdominal obesity, hypertension, insulin resistance, glucose intolerance, and dyslipidemia. It is associated with low-grade inflammation and oxidative stress and an increased risk of developing cardiovascular diseases. Dietary weight loss is strongly recommended for the management of the MetS and can potentially minimise the risk of cardiovascular diseases and diabetes in individuals with the MetS. Little is known regarding the role of these arachidonic acid metabolites in the MetS and the effect of weight loss on their metabolism. Chapter three comprised of three in vitro studies aimed to examine 20-HETE synthesis in human blood cells. 20-HETE acts as a second messenger for vasoconstrictor actions of angiotensin II (Ang II) and endothelin-1 (ET-1) in renal and mesenteric beds. Human neutrophils and platelets are integral to the inflammatory process. ... Production of LTB4 and 20-OH-LTB4 was significantly lower compared with controls (P<0.005) and remained so after adjustment for neutrophil count (P<0.05).The weight loss intervention resulted in a 4.6kg reduction in body weight and a 6.6cm decrease in waist circumference and a significant increase in LTB4 and 20-OH- LTB4 in the weight loss group. Chapter Five continued to investigate the role of other arachidonic acid metabolites, 20-HETE and F2-IsoPs in the MetS and the effect of weight loss. In the case-control study (Human study 1), plasma and urinary 20-HETE and F2-IsoPs were significantly elevated in the MetS group, but no significant difference was found in stimulated-neutrophil 20-HETE. A significant gender x group interaction was observed in that women with the MetS had higher urinary 20-HETE and F2-IsoPs compared to controls (P<0.0001). In a randomised controlled trial (Human study 2), relative to the weight- maintenance group, a 4.6 kg loss in weight resulted in a 2 mmHg fall in blood pressure but did not alter the production of 20-HETE or F2-IsoPs. No significant differences were shown in 20-HETE released from stimulated-neutrophils before and after weight loss. 20-HETE and oxidative stress may be important mediators of cardiovascular disease risk in the MetS. Although a 4% reduction in body weight reduced BP, there were no changes in plasma or urinary 20-HETE or F2-IsoPs. In summary, in vitro studies show that human neutrophils and platelets can produce 20-HETE in response to Ang II and ET-1, and human studies demonstrate that the presence of MetS has a significant impact on arachidonic acid metabolism and effective weight loss can restore leukocyte synthesis of LTB4.

Identiferoai:union.ndltd.org:ADTP/281384
Date January 2009
CreatorsTsai, I-Jung
PublisherUniversity of Western Australia. School of Medicine and Pharmacology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright I-Jung Tsai, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0022 seconds