Arbuscular mycorrhizal fungi (AMF) form a mutually beneficial symbiotic relationship with a majority of land plants through an exchange of nutrients. Despite the importance of AM symbiosis in agricultural and ecological settings, relatively little is known about how the fungal symbiont actively promotes symbiosis. To overcome a host’s immune response, plant pathogens secrete effector proteins that modify a host to suppress an immune response. Few effectors have been identified in AMF, as bioinformatics methods have failed to accurately predict their sequences. To successfully colonize a plant, AMF form structures called arbuscules within plant root cortical cells. Arbuscules are a primary site of nutrient exchange during AMF symbiosis. This work is built on the hypothesis that AMF produce effector proteins to promote symbiosis, and that arbuscules are a site of effector secretion. Using Rhizophagus irregularis, Glomus versiforme and Medicago truncatula this work applies a proteomics-based approach using a new biotechnology to identify fungal proteins secreted by AMF. This novel approach using proteomics and proximity labelling to identify proteins by mass spectrometry is the first time this system has been used to study the plant-AMF relationship. In this work, mass spectrometry identifies a total of 24 R. irregularis proteins and two G. versiforme proteins that are candidate effectors involved in the plant-AMF symbiosis.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42799 |
Date | 08 October 2021 |
Creators | Price-Roberts, Bridget |
Contributors | MacLean, Allyson, Kassen, Rees |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0018 seconds