Return to search

PREDICTIVE MODELING OF DC ARC FLASH IN 125 VOLT SYSTEM

Arc flash is one of the two primary hazards encountered by workers near electrical equipment. Most applications where arc flash may be encountered are alternating current (AC) electrical systems. However, direct current (DC) electrical systems are becoming increasingly prevalent with industries implementing more renewable energy sources and energy storage devices. Little research has been performed with respect to arc flash hazards posed by DC electrical systems, particularly energy storage devices. Furthermore, current standards for performing arc flash calculations do not provide sufficient guidance when working in DC applications. IEEE 1584-2002 does not provide recommendations for DC electrical systems. NFPA 70E provides recommendations based on conservative theoretical models, which may result in excessive personal protective equipment (PPE). Arc flash calculations seek to quantify incident energy, which quantifies the amount of thermal energy that a worker may be exposed to at some working distance. This thesis assesses arc flash hazards within a substation backup battery system. In addition, empirical data collected via a series of tests utilizing retired station batteries is presented. Lastly, a predictive model for determining incident energy is proposed, based on collected data.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:mng_etds-1050
Date01 January 2019
CreatorsGaunce, Austin Cody
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Mining Engineering

Page generated in 0.0027 seconds