This project is inspired by two facts that occur on an everyday basis in much of the world. First, it is obvious that many persons and organizations in many developing nations are paying large amounts of money for large-scale architecture projects, including skyscrapers, museums, and airport, subway, and train terminals. It is often the case that as the mega-buildings are built, many useful materials—structural steel, wood, reinforcing rods, sheets of corrugated steel, and concrete among them--are wasted, even though they could be utilized in smaller projects. The second fact is that digital technology is playing a more important role in the daily life of many people and professionals. The development of such technologies also influences the ways in which buildings are created. Many types of software programs now facilitate the standard and non-standard workings of architecture offices worldwide, starting with design, moving through fabrication, and culminating with assembly.It is suggested that we can reuse the scraps from huge construction projects to provide much needed small buildings in the developing world (such as houses or small commercial structures) by using new digital technologies. As the technology becomes available, many architects will be able to adapt and utilize all types of raw materials in the most efficient ways possible while minimizing the amount of waste taken to landfill sites.To advance these ideas, the author worked as an intern at Morphosis and visited the offices of Gehry Partners and Greg Lynn Form (all in Los Angeles), and Sharpies Holden Pasquarelli Architects (SHoP) in New York; these firms are among the most influential offices in the world, both in regards to the buildings they design and the digital technologies with which they work. Rule-based design was studied to better understand the logic of computation. Simultaneously, several experimental projects were designed and built.The knowledge gained from these studies, experiences, and experiments can give us confidence that new technology can help architects and designers organize the complexity of unique scraps for use in the construction of buildings or building components.However, problems were revealed that are in need of attention. For example, the machines that are typically used for digital fabrication procedures today, such as the laser cutter and CNC router, do not provide the best support for this work because they are not intended to be used with scraps and the price of the machine is relatively high.It is hoped that this project can be a small first step for other architects to understand the possibility and the logic of digital technology within the realm of building construction waste. If studied and understood, the new technology can be a very powerful tool to utilize the leftover material in the most efficient way. / Department of Architecture
Identifer | oai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:handle/188081 |
Date | January 2006 |
Creators | Piriyaprakob, Nutthawut |
Contributors | Klinger, Kevin R. |
Source Sets | Ball State University |
Detected Language | English |
Format | vi, 110 leaves : ill. (some col.), ports. (some col.) ; 28 cm. |
Source | Virtual Press |
Page generated in 0.002 seconds