Return to search

Distribution et dynamique du sulfure de diméthyle (DMS) associées à la banquise dans l'Arctique canadien pendant la période de fonte

La glace de mer saisonnière représente un environnement dynamique et biologiquement productif des régions polaires. La forte activité microbiologique associée à la glace de mer se traduit par une production de sulfure de diméthyle (DMS) souvent exceptionnelle. Le DMS est un gaz biogène soufré impliqué dans la régulation du climat via l’impact refroidissant de ses produits d’oxydation dans l’atmosphère. Cette thèse a pour objets d’étude la répartition et la dynamique du DMS dans la zone de banquise de première année en Arctique pendant la période de fonte printanière. L’ensemble des travaux de recherche présentés ici met en évidence l’ubiquité du DMS dans cet écosystème au coeur duquel la glace de première année exerce un rôle prépondérant. Mes résultats montrent que la communauté microbienne à la base de la banquise est à l’origine de concentrations de DMS parmi les plus élevées rapportées à ce jour dans les océans polaires. Ce réservoir de DMS dans la glace basale participe à l’enrichissement direct de l’océan sous la banquise, mais aussi potentiellement à un flux de DMS vers l’atmosphère. Suivant le déclin des algues de glace à la fin du printemps, les floraisons de phytoplancton sous la glace peuvent aussi être à l’origine d’une augmentation des concentrations océaniques de DMS. Mes résultats montrent que les mares de fonte qui se forment à la surface de la banquise représentent également des sources importantes de DMS pour l’atmosphère arctique. Les concentrations de DMS mesurées dans ces mares de fonte s’élevaient jusqu’à 12 nmol l-1, soit 4 fois la moyenne globale de l’océan de surface. Mes recherches indiquent que le potentiel de production du DMS par ces mares de fonte repose sur leur salinisation et leur ensemencement en algues via les canaux de saumures de la glace sous-jacente. Dans l’ensemble, les mesures effectuées au cours de cette thèse contribuent à mettre en évidence la diversité et l’importance des sources de DMS associées à la glace de première année au printemps en Arctique. Il est primordial d’inclure l’ensemble de ces flux de DMS de la banquise saisonnière dans les modèles climatiques régionaux et globaux. Enfin, mes résultats suggèrent que le remplacement graduel de la glace pluriannuelle par de la glace saisonnière résultera en une augmentation des émissions de DMS depuis la zone de glace saisonnière. / Seasonal sea ice represents a dynamic and episodically productive environment in the Polar Regions. This high biological productivity translates into the accumulation of exceptionally high concentrations of dimethyl sulfide (DMS). DMS is a biogenic sulfur-containing gas involved in the regional climate regulation through its influence on aerosols and clouds formation. This thesis focuses on DMS distribution and dynamics within the Arctic seasonal sea ice during the melt period. Together, my results highlight the ubiquity of DMS within the ice-associated ecosystem, and the determinant role played by sea ice in the DMS cycle in ice-covered regions. DMS concentrations reported in bottom sea ice are amongst the highest ever observed in polar oceans and throughout the marine environment. This pool of bottom ice-DMS enriches the under-ice ocean and potentially acts as a source of atmospheric DMS as it diffuses upward through interior sea ice. Following the decay of the sea ice algal bloom, phytoplankton growth under the ice may lead to a second increase of pelagic DMS concentrations. My results show that melt ponds that form atop sea ice following snow melt are also sources of DMS for the arctic atmosphere. Melt ponds were observed to accumulate DMS concentrations up to 12 nmol l-1, hence four-fold the global ocean surface average DMS concentration. Results from incubations experiments conducted during my thesis indicate that DMS production in melt ponds is initiated upon algal and salt intrusion via the underlying brine network during the melt season. Together, my results contribute to highlighting the importance and diversity of iceassociated DMS sources within the Arctic Ocean. DMS fluxes from seasonally ice-covered ocean should be accounted for in future global and regional models. Finally, my results suggest that gradual replacement of perennial sea ice with seasonal sea ice in the Arctic would result in an increase of DMS emission from the ice-covered ocean.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/33607
Date15 February 2019
CreatorsGourdal, Margaux
ContributorsScarratt, Michael Grant, Levasseur, Maurice
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxiv, 159 pages), application/pdf
CoverageArctique, Côte de l' (Canada)
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds