Return to search

Interakce hyaluronan-aminokyseliny / Hyaluronan-amino acids interactions

The presented dissertation focuses on non-covalent interactions of hyaluronan of different molecular weights (9–1540 kDa) with basic (oligo)-amino acids (especially arginine) and the antimicrobial peptide cecropin B. High-resolution ultrasonic spectroscopy (HR-US), isothermal titration calorimetry (ITC) and potentiometric titration techniques were chosen to investigate the interactions. The thesis focuses on the characterization of interactions, especially with respect to the used molecular weight of interacting polymers and the ionic strength of the environment. Whether interactions occur or not was determined primarily by the length of the arginine oligomer chain. For monomeric amino acids, the interactions were investigated mainly by potentiometric titrations. Interactions were observable from arginine oligomers with eight monomer units. The molecular weight of hyaluronan mainly affected the intensity of the interactions. The transition between the individual conformations of hyaluronan (rod and random coil) was especially significant. Investigation of interactions was performed in water, in solutions with different concentrations of sodium chloride and in PBS. The sufficiently high ionic strength of the solution was able to suppress the interactions in water between the oligomers of arginine and hyaluronan. The basic antimicrobial peptide cecropin B has been shown to interact with hyaluronan in water but not in PBS. Based on these results, it was possible to conclude that the hyaluronan-cecropin B system would be particularly suitable for topical applications.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442347
CreatorsJugl, Adam
ContributorsMaršálek, Roman, Mráček, Aleš, Pekař, Miloslav
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0145 seconds