In this work, neural networks are used to forecast daily Realized Volatility of the EUR/USD, GBP/USD and USD/CHF currency pairs time series. Their performan-ce is benchmarked against nowadays popular Hetero-genous Autoregressive model of Realized Volatility (HAR) and traditional ARIMA models. As a by-product of our research, we introduce a simple yet effective enhancement to HAR model, naming the new model HARD extension. Forecasting performance tests of HARD model are conducted as well, promoting it to become a reference benchmark for neural networks and ARIMA.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:324960 |
Date | January 2013 |
Creators | Jurkovič, Jindřich |
Contributors | Baruník, Jozef, Krištoufek, Ladislav |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds