Return to search

Cross-Conjugation Effects on Fused β, β'–π–Extended Porphyrins

Cross-conjugation in molecules has been seen in nature for many years but was not pursued due to the difficulty of their synthesis and their lack of stability. Recently, it has become more interesting due to the rise of molecular electronics. Linear conjugation serves well as the wires to conduct electrons, but molecular electronics are made up of more than just wires. Molecules are needed that possess an on/off switch that can allow or deter conduction. Cross-conjugated systems show promise in their ability to be turned on or off from external stimuli. Pentacene quinone is a well-known cross-conjugated molecule that already shows promise in the field of molecular semiconductors. By synthetically fusing the pentacene quinone to the β, β' positions of a porphyrin, it has been shown that both the solubility and stability have been greatly improved. This has allowed us to pursue functionalization of the quinone moiety. Several new cross-conjugated pentacene quinone fused porphyrin systems were synthesized and studied. It was found that cross-conjugated platinum porphyrins show enhanced fluorescence, and phosphorescence that shifts toward the Near IR. Additionally, strong electron withdrawing groups show potential in charge transfer, and a lower HOMO to LUMO gap, while mildly withdrawing groups have a higher HOMO to LUMO gap. Furthermore, a new method to introduce halogenated methine bridges at the pentacene quinone core was developed, thus opening the doors to new polycyclic aromatic hydrocarbons to be synthesized and studied.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2257026
Date12 1900
CreatorsWashburn, Spenser L.
ContributorsWang, Hong, D'Souza, Francis, Weber, Rebecca, Richmond, Michael
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Washburn, Spenser L., Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0162 seconds