Return to search

Malarial pathogenesis and interventions in Kelch mediated Artemisinin resistance in Plasmodium falciparum

Malaria, a parasitic disease, was commonly associated with third world countries, with the highest mortality in nations in Sub-Saharan Africa and Asia. But, travel increases the risk of spread to more temperate regions, such as Western Europe and the United States where Malaria has been successfully eradicated. In the past 40 years, with a better understanding of the mosquito vector and the parasite itself, advancements in treatment and containment have been made.
Understanding the parasite as well as its pathogenesis is vital in formulating effective treatments. Following the incidences of Plasmodium falciparum, knowlesi, vivax, malaria, ovale, and less commonly cynomolgi and simium over time as well as region helps to better illuminate the methods of Malarial transmission, interplay with environmental factors, and methods of treatment. While each species of parasite is similar in terms of mode of infection, they differ slightly when considering incubation periods and diagnostic and treatment techniques.
Many drugs have been developed to treat Malaria and include Chloroquine, Primaquine, and derivatives of Artemisinin. While the discovery of these drugs was a significant breakthrough that dramatically reduced incidence and deaths caused by Malaria, improper administration of treatment has led to a recent increase in strains of the parasite which have developed drug resistance to Artemisinin Combination Therapies (ACT’s). Of these species, P. falciparum and P. vivax, the most common causes of malaria, are also so far the only species to have developed drug resistance. The goal of this thesis is to explore popular interventions, both drug and public health based, and how research focus has now shifted to better understanding the mechanism of parasitic drug resistance, specifically linked to mutations found in the Kelch protein in P. Falciparum. The recent findings of Kelch mutations pave the way towards addressing the growing problem of anti-Malarial resistance.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/36618
Date14 June 2019
CreatorsPittala, Keerthana
ContributorsRitter, Brigitte, Symes, Karen
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0017 seconds