This thesis deals with the magnetic resonance perfusion data analysis especially DCEMRI. In its introduction the thesis describes the problem of DCE-MRI data aquisition, the necessity of appropriate contrast agent and basic principles of perfusion analysis. The dynamic behavior of contrast agent vascular distribution can be described by arterial input function (AIF). The shape of the curves close to the area of interest is affected by dispersion which is called vascular transport function (VTF) due to the distribution of the contrast agent to the region of interest. Finally the tissue residual function describes system behavior of tissue. The practical part of the diploma thesis is aimed at implementation of model curves AIF, VTF and TRF. Furthermore, a simulation program was created for easy manipulation with introduced models moreover the program is used to perform an estimation of perfusion parameters based on nonblind deconvolution. The method is validated on synthetic data and illustrated on clinical data of the renal cell carcinoma patient.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:220837 |
Date | January 2014 |
Creators | Válková, Hana |
Contributors | Jiřík, Radovan, Kratochvíla, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds