A Barragem de Itaipu é uma obra de engenharia de grande importância. Localizada na fronteira entre o Brasil e o Paraguai no Rio Paraná e com coordenadas geográficas aproximadas 25°24\'29\"S, 54°35\'21\"O, ela fornece energia elétrica a estes dois países e deve ser constantemente monitorada de modo a manter níveis de qualidade e segurança. Mais de dois mil instrumentos foram instalados e fornecem dados contínuos sobre diversas características da fundação e estrutura da barragem, incluindo mais de 650 piezômetros. A avaliação de níveis piezométricos em barragens é importante, pois refletem os valores de subpressão que atuam na estrutura da barragem. A utilização de novos métodos em tais análises pode permitir agilidade na tomada de decisões por parte da equipe de segurança de barragens. Dependendo do método aplicado, uma melhor compreensão do fenômeno no tempo e espaço pode ser obtida. Este estudo aplica Redes Neurais Artificiais (RNA) para simular o comportamento dos piezômetros instalados em uma descontinuidade geológica na fundação da Barragem de Itaipu. Ele considera diferentes tipos de dados de entrada em uma Rede Neural Multicamadas e determina a melhor arquitetura de RNA que mais se aproxima da situação real. / Itaipu Dam is an engineering work of high importance. Located at the border between Brazil and Paraguay in the Paraná River and with approximated geographical coordinates 25°24\'29\"S, 54°35\'21\"W, it provides electrical energy to these two countries and has to be constantly monitored in order to maintain its levels of quality and security. Over two thousand instruments have been installed and they provide continuous data about several characteristics of the dam foundation and structure, including more than 650 piezometers. The evaluation of piezometric levels in dams is important for it reflects the values of the uplift pressure that acts on the structure of the dam. The utilization of new methods in such an analysis can provide agility to decisions-taking by the security team of the dam. Depending on the method applied, a better comprehension of the phenomenon in time and space may be achieved. This study employs Artificial Neural Networks (ANN) to simulate the behavior of the piezometers installed in a geological discontinuity in the foundation of Itaipu Dam. It considers different types of entry data in a Multilayer Neural Network and determines the best ANN architecture that is closest to the real situation.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06032014-103252 |
Date | 19 December 2013 |
Creators | Bruno Medeiros |
Contributors | Lázaro Valentin Zuquette, Reinaldo Lorandi, Denise Balestrero Menezes |
Publisher | Universidade de São Paulo, Geotecnia, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds