Return to search

Empirical Evaluation of Approaches for Digit Recognition

Optical Character Recognition (OCR) is a well studied subject involving variousapplication areas. OCR results in various limited problem areas are promising,however building highly accurate OCR application is still problematic in practice.This thesis discusses the problem of recognizing and confirming Bingo lottery numbersfrom a real lottery field, and a prototype for Android phone is implementedand evaluated. An OCR library Tesseract and two Artificial Neural Network (ANN)approaches are compared in an experiment and discussed. The results show thattraining a neural network for each number gives slightly higher results than Tesseract.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-46676
Date January 2015
CreatorsJoosep, Henno
PublisherLinnéuniversitetet, Institutionen för datavetenskap (DV)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds