Falls are a leading cause of injury and accidental injury death worldwide. Fall-risk prevention techniques exist but fall-risk identification can be difficult. While clinical assessment tools are the standard for identifying fall risk, wearable-sensors and machine learning could improve outcomes with automated and efficient techniques. Machine learning research has focused on older adults. Since people with lower limb amputations have greater falling and injury risk than the elderly, research is needed to evaluate these approaches with the amputee population.
In this thesis, random forest and fully connected feedforward artificial neural network (ANN) machine learning models were developed and optimized for fall-risk identification in amputee populations, using smartphone sensor data (phone at posterior pelvis) from 89 people with various levels of lower-limb amputation who completed a 6-minute walk test (6MWT). The best model was a random forest with 500 trees, using turn data and a feature set selected using correlation-based feature selection (81.3% accuracy, 57.2% sensitivity, 94.9% specificity, 0.59 Matthews correlation coefficient, 0.83 F1 score). After extensive ANN optimization with the best ranked 50 features from an Extra Trees Classifier, the best ANN model achieved 69.7% accuracy, 53.1% sensitivity, 78.9% specificity, 0.33 Matthews correlation coefficient, and 0.62 F1 score.
Features from a single smartphone during a 6MWT can be used with random forest machine learning for fall-risk classification in lower limb amputees. Model performance was similarly effective or better than the Timed Up and Go and Four Square Step Test. This model could be used clinically to identify fall-risk individuals during a 6MWT, thereby finding people who were not intended for fall screening. Since model specificity was very high, the risk of accidentally misclassifying people who are a no fall-risk individual is quite low, and few people would incorrectly be entered into fall mitigation programs based on the test outcomes.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/40948 |
Date | 04 September 2020 |
Creators | Daines, Kyle |
Contributors | Lemaire, Edward, Baddour, Natalie |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0018 seconds